AD612601




3 T3ndY:
2

$3 T I Ticts] 3933, »
teaTEREePRIEIIL :xxa;--ultn-&uii&h
P At R 1513 i
ey
‘(c g.ul‘u.“*‘g:;, 430130 siain

Bt

NpEbRe s s ianiis

0y

o e

MARKOWAN DECIS!ON Paocessss wnm
- UNCERTAIN TRANSITION PROBABILITIES™ -

.

~. # i
'
R 1
. -
. u
r <
-
a . | -
- 3
14 . K
. ' » 3
2 - 3 4 .
-
: 5 g .
] . . q

13

-

’
%
.
* Fid n
¥ i
s o o2

B & ¥: .

] 3 .

H .

. OF ‘COMPLEX §

sy

" RESEARCH IN THE (

“ o

s
iy o .
(AR 3
1
" 5
.
;.
s .
v .
5 I E
A 4
A .
4 -
S 3 ;

OF

reconoar

+

e

3.
4

t

STEMS

?
-2
&
>
O
-
o
vy
- m:
C ]
-
U
5
W
]
-1
] e
]
l'l'l

ONTROL

‘ - John M. Cozzoline -
Romulo Gonzalez-Zubieta - .
S Ry ‘ Ra!ph L Miller
at S T Morch 1965,
= ) 3 ‘: ‘;., ETE & E 3
LA e A ‘ B ey
' " s L 3 L ) :




MARKOVIAN DECISION PROCESSES WITH

UNCERTAIN TRANSITION PROBABILITIES

by

John M, Cozzolino
Romulo Gonzalez-Zubieta

Ralph L. Miller

Technical Report No. 11
On Work Performed Under
Contract Nonr-1841 (87), NR 042-230

Office of Naval Research

RESEARCH IN THE CONTROL OF COMPLEX SYSTEMS

Operations Research Center
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge 39, Massachusetts

March, 1965




FOREWORD

The Center for Operations Research at the Massachusetts
Institute of Technology is an inter-departmental activity devoted to
graduate training and research in the field of operations research.

Its products are books, journal articles, detailed reports such as
this one, and students trained in the theory and practice of operations

research.

The work of the Center is supported, in part, by government
contracts and industrial grants-in-aid. The research which led to
this particular report was supported by the Office of Naval Research
under Contract Nonr-1841(87). Reproduction in whole or in part is

permitted for any purpose of the United States Government.

Philip M. Morse,
Director of the Center

Ronald A. Howard,
Project Supervisor




ACKNOWLEDGMFNT

We wish te express our sincere gratitude to
Professor Ronald A. Howard for his guidance and
encouragement as project supervisor, and to
Dr. George R. Murray, Jr. for his help and advice.
We would also like to thank Miss Priscilla A. Mullin
and Mrs. Nobu McNeill for their excellent work in
organizing and typing of this report. The computer
simulations were done with the facilities of the

M. I. T. Computation Center.

1i



MARKOVIAN DECISION PROCESSES WITH UNCERTAIN
TRANSITION PROBABILITIES

by

John Cozzolino
Romulo Gonzalez

Ralph Miller

ABSTRACT

The theory for finding optimal policies for Markov processes with
transition rewards and many alternatives in each state, when the transi-
tion probabilities are giver, has already been developed. But in most
practical applications, these transition probabilities are not known
exactly--one has only some prior knowledge about them.

This problem of uncertain transition probabilities was first treated
by Dr. E. A. Silver in the Interim Technical Report #1 of the Operations
Research Center of M. I. T. Section I of the present report extends sev-
eral of Silver's results. We propose a dynamic programming formulation
for the problem of choosing an optimal operating strategy and we carry
out the solution for a special two-state example. However, it is found
that solution of non-trivial problems of any higher dimension is impracti-
cal.

Section II is concerned with experimental and heuristic approaches to
the problem, and relies upon simulation rather than upon analysis. We
investigate certain statistics of the process when the unknown transition
probabilities are governed by a multi-dimensional beta prior (a convenient
form for Bayes modification). We find that the process with known prob-
abilities which are equal to the mean values of the unknown prcbabilities,
provides us with a remarkably good picture of the unknown process. The
hypothesis is stated and investigated that this process of expected vaiues
is adequate for decision purposes, and that detcrmining decisions from it
is feasible as well as useful.

Finally, some alternative approac. es are suggested for cases which
might not be handled by the expected values technique.
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CHAPTER I

INTRODUCTION

1.1 Statement of problem

The process which we are considering is a multistate discrete time
Markov process with transition rewards. The decision structure consists
of a set of possible alternative actions in each state. Each such action has
associated with it a unique set of transition probabilities and rewards. At
each time period. an alternative must be specified for the state currently

occupied. A set of alternatives, one for each state, is called a policy.

We might illustrate the structure of the problem by setting forth a
simple example that will be familiar to those who have read reference (1).
A taxi driver operates between three towns: A, B, and C. The probability
of .a1is picking up a fare to a particular destination is dependent upon where
he is now, so we set up a Markovian model. But in addition we assume that

he can follow one of three different courses of action:

1. He may cruise around and wait to be hailed.
2. He may wait at a cab stand for a fare to come along.

3. He may wait at a radio call box for a call to come through.

Of course, his choice cf alternative will alter his probabilities of
picking up fares to the various towns--for instance, it may be more likely
that a radio call will be for a long trip. Also, the rewards will be influ-
enced by the alternatives because of the differing costs involved--it is
cheaper to wait at a cab stand than to cruise {although 1. may take longer

to get a fare).




Let us assume that all three alternatives are open to our driver, except
i town B where there is no radio call box, so that alternative 3 is not

possible. We might find the following probabilities and rewards to prevail:

Probability Matrix

Town A fown B Town C
P = Town A 1 1/2 1/4 1/4
2 1/16 3/4 3/16
3 1/4 1/8 5/8
Town B 1 1/2 0 1/2
2 1/16 7/8 1/16
Town C 1 1/4 1/4 1/2
2 1/8 3/4 1/8
3 3/4 1/16 3/16
Reward Matrix
Town A Town B Town C
R = Town A 1 10 4 8
2 8 2 4
3 4 6 4
Town B 1 14 0 18
2 8 16 8
Town C 1 10 2 8
2 6 4 2
3 4 0 6




This then is the structure of the problem we shall consider. When all
transition probabilities and rewards are known, it is possible to find the
optimal policy for an operation which lasts for a finite time with terminal
rewards, or one which lasts indefinitely long. Also, in this infinite dura-
tion case, we might maximize the expected gain per period, or, alternatively
we might prefer to discount the future rewards and maximize the present
value of the infinitely long reward stream. Both of these cases have been

solved by Howard's policy iteration method. (1)

The work reported in this technical note concerns the Markov decision
problem in which the decision maker has impe. fect knowledge of the transi-
tion probabilities for the process. We assume that we have some prior
knowledge about these unknown transition probabilities, and that this infor-
mation is expressed in a probabilistic manner. We can gain information

about these unknowns by observing transitions as the process continues.

This problem becomer trivial in the infinite duration, no discounting
case. The optimal solution to the decision problem is to experiment in-
definitely long with every alternative to find the exact values of the unknown
transition probabilities, then solve the deterministic decision problem by
Howard's policy iteration to find a policy to use for an infinite amount of
time. This follows because even an infinitesimal improvement in the ex-

pected gain per period is worth an infinite amount in this case.

However, when time has value, this becomes quite a different (and

difficult) problem. We must do some experimentation to find the best




policy, but the longer we experiment, the less that best policy becomes
worth to us. We would expect that for any discount factor, there would
exist a best strategy in an expected value sense. Such a strategy would
specify the best choice of alternative in each state for each distinct set
of prior knowledge. Since prior knowledge is updated in time as the pro-
cess operates ( giving us information), the best choice of alternative
changes in time as well. It is important to see that the optimal strategy
since it is optimal in an expected value sense, would not necessarily
ever lead us to follow that policy which is in fact optimal (that is, we
would follow if we knew all the transition probabilities exactlv). The
optimal strategy will, rather, give the best trade-off between search and

immediate earnings.

In this report we will consider a variety of approaches to this prob-
lem. Heuristic approaches usefu. for large problems and analytic methods

suitable for small problems will be examined.




1.2 Notatiolx

The discrete time Markov process with N states and with only one
alternative in each state is specified by a transition probability matrix P,
whose element pij gives the conditional probability of a transition from i

to j given that the process is in state i.

The reward structure 1s specified by a reward matrix R whose element
rij gives the reward earned by thz process {or making a transition from state
i to state j.

The steady state probabilities for this process are denoted by a vector

PRERERE ™ .) (we assume completely ergotic processes.)

The expected reward on the next transition, given that we are in

state i, is given by:

1s:

If discounting is used, so that the present value of one dollar to be
receivad one period in the future is f then the expected present discounted
value of the infinite stream generated by the one policy process starting in
state i is denoted by v, Clearly v, depends on the starting state since
rewards in the near {uture are the most important. The column vector,

v, of these values vi is found from the P matrix and the q vector:




v-=[1-pP] g

Now, let there be ki different alternatives in state i, for i =1,
2,.....N. There are then kl C kz S'oC kN possible policies under which
the process may operate. For each policy there is a P matrix, a 7
vector, and a v vector. We dznote alternatives with a lower case super-
script, so that p:(j is the conditional probability of a transition to state
j given that we are in state i and operating under alternative k. We use

: .. A .
upper case superscripts to denote policies, so 7 is, the 7 vector for

policy A. N

Finally, the entire P matrix for the problem has S ki rows, and
()
i=1
each entry is an unknown about which we have some prior knowledge. Be-

cause we will soon need some precise terminology to distinguish just what
process we are referring to, we decide to call this process with unknown

transition probabilities the primary process, since it is the primary focus

of our concern. We call the entries random variables, over -vhich we have

some prior distribution. This is the Bayesian formulation of unknowns.

Because the statistics associated with the primary process are random
~k
variables, we write them with a tilde above them. Thus, p.. is the unknown

1
probability of going to j under alternative k given that we arJe in state 1.
These are random variables and each one has some distribution, we shall
select such a distribution from a known parametric family. Thus with each
random variable is associated one or more prior parameters. These are

just numbers, and for reasons which will become clear in the next chapter,

: : k
we designate the prior parameters mij .

Later it will be convenient tc speak of another process, whose transition
probabilities are known exactly and are equal to the mean value of the corre-

sponding probabilities for the primary process. We will call this process

b=




the expected process. Because we shall refer to it so often, statistics

associated with this process will be written without extra tildes or super -

scripts. Thus by definition:

k ~k

and Tyl is the steady state probability of being in state i for the expected

~ e
process. Note that since 7  is not in general linear in p,, , it is not
1
~
necessary that 7 = E ( 7rj ).
J

Since the primary process is composed of random variables, we will
often find it useful (for simulation purposes) to draw sample points from these
distributions to get processes which we will call sample processes. Statistics

associated with these processes will be denoted by a presuperscript s. Thus
s

A
T, is the steady state probability of being in state i under policy A for a

particular sample process s.

Thus, variables associated with the primary process have tildes, vari-
ables associated with the expected process have no extra markings, and vari-
ables associated with sample processes have a presuperscript s. Because
understanding of the relationship of these various processes is so important
to what follows, we conclude this section with a graphical portrait of their

relationship.

We have an actual process, a true state of nature, but unfortunately,

we do not know it exactly:
Actual process

unknown
numbers




Being Bayesians, we treat the unknown transition probabilities

as random variables, pl;),

K
meter m,.. Thus:

pPrimary process

1

PN1

(random variables)

, whose distribution is indicated by a para-

prior parameters

m,, m cese M

(known numbers)

For convenience in later analysis we define still another process:

expected process

~

=]
E(p,,) - E(p )

(known numbers)

—- . . - - n_m_-e_,a-—- -

expected process

1 1
Py -+ Pin

(known numbers)




Finally from the prior distribution we can draw:

sample process 1

1 1 %1 1 S

Pl P12+ PiIn
S

P
2y i

P21
s1 kN

PNl ]

(known numbers)

sample process 3

"'_!

®g 1 %3 91  Ba g

Pl P2 PIN
53 2

P11
®s 1

P
33 kN

P N1 )

( known numbers)

sample process 2

—

Ee |

| p11

52 2
P11

(known

S S

2 1
P2

et e e e T prep—

numbers )




CHAPTER II

THE MULTI-DIMENSIONAL BETA DISTRIBUTION

2.1 In search of a prior distribution

The problem we have formulated assumes that there is prior know-
ledge of the unknown transition probabilities of the primary process, and
that this knowledge is to be expressed probabilistically. We shall now dis-

play a convenient form in which to express this knowledge.

Assume that at some moment the system is in state i. The immediate
future of the system can be described as a multi-nomial Bernoulli process,
That is, one and only one transition to another state will take place, and
that transition will be made according to the probabilities pij’ = 2 ss a2
If we consider only those transitions made out of state i we have a multi-

ncemial process:
pr(Ei | P2 Pyprevceeees 5 piN) =N G~ Py C Py e PiN

Where Ei is the event of observing exactly n, transitions from

1

state i to state 1, n_ from i to 2, etc. The conjugate prior for this distritu-

2
tion is the multidimensional beta distribution:

We shall shortly show that the multi-dimensional beta is an excep-
tionally convenient form to use for the distribution for sil' SiZ ........ s
But first it must be noted that use of this prior involves the implicit assump-
tion that the random variables in each row of the transition matrix are

independent of the random variables in any other row of the matrix.

-10-




That this would in fact be the case in any application is not obvious, and
in some sense it is even unlikely. In the example proposed in the introduction,
a similar type of alternative existed in every state. If those probabilities were
unknown, information about alternative 1 in state ! might well give us some
clues as to the transition probabilities for the same alternative in state 2.

So, while we shall use the multidimensional beta distribution throughout, in
order to keep the calculations simple, it should be borne in mind that this

implicit assumption of independence may not be desirable in some applications.

Throughout this report we shall denote by m_ the beta parameters used,
1)

and shall denote by Ni the row sum of the m _ :

We shall now consider some of the properties of this distribution, and

an interpretation for the m i
1

2.2 Properties of the multidimensional beta distribution

We simply list some of the general properties of the multidimensional bet~

distribution.

l. The marginal distribution of a particular pij is given by:
2s The expected value of a particular pij is given by:
m.,

3 = > = -1
3. The variance of a particular p.,. is given by:
m.,. m,. .
4 i (1 - ij ) 1
Py 7 N, N . N + 1
1 1 1
1

_ = . 1 5
-11-




4. Bayes modification of the distribution can be accompiished by inspec-
tion. Let E be the event that we observe f,  transitions: m i to j,

1)
)& 1,2 a7 N. Then the posterior distribution is:

+ PR © 0 (NG, N S
| m 4 £, .m +f, m.ot N

2.3 Determination of prior parameters

The expression for the mean T’ij gives us an interpretation of the
prior parameters, and thus an intuitive way of assigning them. Since
F (pij) = —-ITJ_— , we can sp;cify, instead of the mij’ N-1 of the mean

1

values and a value for Ni' From these statistics, the prior parameters can
be calculated. Ni is some kind of a measure of our certainty, as we can
see by noting that the variance is inversely proportional to Ni-!- 1. E. A.
Silver (3) notes that good results can be obtained by a least squares fit of
the intuitive marginal variances to a single value Ni' But in most applica-

tions it is likely that one will not have a good idea of the variances which are

to be so fit -- so Ni will remain a somewhat crude measure of "certainty. "

It may help to note that specifying an initial value of Ni will yield
the same result as if we had specfied a uniform prior, and had taken then
N.1 - N observations which happened to yield the same mean values. So
that specitying a value of Ni' is in a sense equivalent to having taken

N. - N observations starting from a uniform prior.
1

2.4 Methods of sampling

Simulation methods will be used extensively in the following work;
it is therefore important to have a method of sampling from the beta
prior. Ideally, the prior represents completely our knowiedge about the
state of nature, so that the actual process is only a "random draw irom

the prior. ¢

-2~




We take this interpretation literally, and test all our heuristics by draw-
ing many sample processes from the prior and evaluating the neuristics
with each one of the possible states of nature thus obtained. The sampling
procedure is an approximation to the usual Bayesian technique of pre-
posterior analysis which, in the examples we shall study, is an exceedingly

complex mathematical task.

E. A. Silver (3) has shown that to randomly draw from f6 (p I m),

we can take independent draws (y ij) from the N simple Gamm.. distribu-

tions: - |
et it R
f . lm,, = . 0<y. . =< oo
v(yul ij 4 I'(mij) 7 e 7ij
Vies
and then p.. = =L

[
s
=)
<
i
e

If all the mij are integral, the Gamma becomes a simple Erlang-m 'k

Mosiman (2) shows that to sample from the Erlang-m i 2
1

1) 1)
1 1
Y., = — z llnr. l = - —-——z In r.,
ij q i q i
i=1 i=1

where r, is drawn from a rectangular distributionon [ 0,1]. Sirce we

divide by Z yij’ the scale factor q is irrelevant, and can be chosen

J
to keep the logarithms in a convenient range (we use q = 20.) To be
certain that all the m.. are integral, we truncate the actual values. This

is necessary, as Mosiman also states that there is no way to sample from

a general Gamma, short of using tables of the incomplete Gamma function.

The subroutine GEN in Appendix A shows a programmed version

of this sampling routine.

CIBL




CHAPTER III

A SPECIAL TWO STATE PROBLEM

3.1 The Problem

We now have a notation for expressing our decision problem, and
a pricy distribution to encode our knowledge about the unknown transition
probatilities. Let us now begin to formulate the general decision problem

described in the introduction.

We initiate this task by considering a very simple special case, pre-

paratory to the formulation of the most general case in Chapter IV.

Consider the following two-state discrete time Markov process.

When in state 1 there is no choice; the transition probabilities are

( P11 , P 12) = ( 3/4, 1/4), and the transition rewards (r 11’ * 12).

There are two alternatives when in state 2; alternative 1 having transition
S 1 2 _ . 1 2

prcbabilities ( PZI’ PZZ) = (1/4, 3/4) with rewards (rZI’ rZZ)’ and

(2 d ~
alternative 2 having the unknown transition probabilities ( pgl, p;z) with

This process can be represented by the follow-

2
ki.own rewards (r 51 T 22).

ing diagram:

1/4
3/4 state state ~
1 ' \ 2 (1/4, p

(3/4, 7o)

2
22)

-14-




v ~2
We assume that the random variables pil and P,, are multi-

ot

dimensional beta distributed. For simplicity, we will denote p21
simply by p for the remainder of this chapter, as there are no other

=2
unknown probabilities. (p22 = 1—=p). We denote the beta parameter
2 2 2

N, -m

2 .. _
m simply by r, and the parameter N m,, =N, 21)

21 simply by n. (

2
The decision problem now becomes to specify for each set of
parameters (r, n) whether to follow alternative 1 or alternative 2 in

state 2.

8.2 Formulation by Dynamic Programming

3.2.1 The Dynamic Programming Approach

The solution of a problem of this type depeunds upon all possible
outcomes and all decisions in the future. The outcome and decision tree,
however, is infinite since the process will operate for an indefinitely leng
time. Discounting reduces the importance of the future, but we are
essentially dealing with a boundary value problem with the boundary of
infinity. The only technique presently known for solving such a problem
is that of truncation to a finite outcome decision space. This finite
problem can be solved by dynamic programming, and the size of the
finite case taken large enough to yield a converging approximation to
the infinite case. Usually this must be done numerically, though it may
be possible to discover certain analytic properties of the optimum solu-
tion which enable us to {ind the optimum by another, possibly analytic,

method.

3.2.2. Terminal Policy

In order to formulate the problem we will first introduce a
terminal situation. Suppose we are given a process which will operate
for an indefinitely long period of time. While the process operates we
must make a decision every time that the process enters any state with
more than one alternative. We will observe the outcomes and improve

our decisions in time. However, suppose that at some preknown time

-15-




we will make a terminal policy decision which will be used throughout
the remainder of the operation. This terminal decision policy will
specify not only an alternative for the state currently occupied, but
also alternative decisions for all states which might be entered in the
future. The alternative to be chosen at each state is always fixed (i.e.
the terminai policy is time-invariant.) Each possible terminal policy

decision has a terminal value associated with it.

3.2.3. The Decision Stage

The time from the start of the process until the terminal decision

will consist of a fixed number of decision stages. One possible choice

for the decision stage would be the period (holding time) of the process.
But, as decisions are only made when in state 2 for this simple process,
it will be convenient to define the decision stage to be the time between
consecutive departures from state 2. This time is random in terms of
the number of transitions, but this disadvantage is more than offset by

the fact that with this choice we know precisely how many observations

of the transition whose probability is unknown are taken per decision
stage- -precisely one. Anytime the process enters state 1 it will be

regarded as having the decision stage number of the next entry into state

2;

3.2.4 Dynamic Programming Equations

At the Oth stage we will choose the policy with the highest expected
terminal value. Let VZN (r,n) denote that expected present discounted
value of the infinitely long income stream from the process given that an
optimal policy is followed, the system is in state 2 and N more decisions
are to be made before the terminal decision. This quantity is obviously
a function of the prior parameters of the unknown p. We use a capital V
for this value function which has prior parameters as arguments to distin-
guish it from the function lower case v which is the value function when
the probabilities are known. We can always compute v from the equations
(see Chapter I). v =[1- B P] ) lg . Capital V is another matter. At

the Oth stage, we can then write:

-16-




(Pl), v (Pz)f

2
. { P |r,n)dP2}

g

k s NE : :
where P denotes the square transition probability matrix associated
with policy k (i.e. follow alternative k when in state 2.) The first term
inside the bracket is the value, when in state 2, of following policy 1. The

second term is the expected value, when in state 2, of following policy 2.

We can next write expressions for V (r, n)in terms of similar

2
functions for ( N-1). Given that we are in state 2 with N stages left,

with probability p we will be in state 1 with ( N-1) stages left, and with
probability 1-p we will be in state 2 with (N-1) stages to go. Taking the

expectation over p ( recall that E = r/n), we find:

N 1 r 2 N-1 !
Vz(r,n)—Max{vZ(P),T[er-t»ﬂV1 (r+1, n+ 1]
r 2 N-1 T
<|-(1—-B—)[r22+(3VZ (r,n+1)] }

Notice that the first expression inside the braces, which corres-
ponds to taking alternative 1, is a very simple expression. This is be-
cause once we decide to follow the alternative with known transition
probabilities, we get no new information about the unknown probabilities,
and therefore there will never be any reason to change our minds about
following the unknown alternative, that is, once we start to follow alter -
native 1 we follow it forever. Thus, the appropriate expression to enter
for the choice of alternative 1 in our expression, is simply the present
value of the income we would get by following that alternative forever.
This is denoted by v > {{ 1= : ), and is computed from the equations of

Chapter I.
We can also write an expression for V1 (r,n) in terms o1
N o :
VZ (r, n) so that our expression involves only one unknown. Since state

1 has known probabilities,

-17-




N
Py Tt Pl B vV, (rn)]

Vll\l(r,n) =

Moreover, in the equation for VI; (r,n), the superscripts are
superfluous, since our definition of the decision stage forces N+4n to be a
constant. Thus. the fact that the right side is superscripted (N-1) is already
conveyed by the fact that the argument is (n+1). So, we can drop the super-

scripts and write our dynamic programming equations as:

1 r
i} X 1 ‘.
Vz(r,n) Max IVZ(P ), [ = (a1+a Vz(r+ , n+1l);

2

+ (1..%)(a3+a4 Vz(r,n+l))]}

1
where again v 2 (P ) is the value of following the known alternative 1, and:

_ 2 B
dq TRy ¥ (pyp Tyt Py Typ)
(1-Bp,y)
11
2
L. P, P
o\
l-ppll
i
a3 T
a4=ﬁ

3.3 Knowledge Space

The function VZ (r,n) is defined over a two dimensional space, and
may be plotted in three dimensions. However, what is critical for decision
purposes is the plot of the points where the two expressions in the maximum
above are equal. On one side of this boundary, we will always choose alterna-
tive one, and on the other side we will always choose alternative two. Thus,
given this boundary, and knowing which side of it corresponds to alternative

one, our decision problem is solved. Given any state of knowledge (r,n) we
-18-




merely look at our graph and see which alternative to follow. In the next
sections, we will give a method for computing this boundary, but let us
first pause to investigate which side of the boundary corresponds to which

policy.

Under certainty, the value as a function of the transition probability

in state 2, p, can be expressed as:

2, p+a3(1-p)

v, (p) =
l'az p‘a4(l‘P)

where the a. are, as defined in the last section. Then:
1

-a_(a, - a

d Vv (a-a)(l-a4) 3

1 3

d p [l-azp-a‘}(l-p)]2

The denominator of this expression is always positive, so the
derivative takes the sign of the numerator, which is a constant. That is,

the value function monotonically increases or decreases as a function of

p. Thus, the policy with known transition probabilities may be above or
below the boundary, but this may be determined by inspecting the sign of
the constant numerator above for any problem. If the derivative is positive
the 'known" policy would be followed when we nad states of knowledge lying

above the decision boundary.

3.4 Numerical Computation Using Dynamic Programming

Suppose that for some N and for all r we know the values of V.2 (r,.a).

Inspection of the dynamic programming equations then reveals that we can

compute the value of V_ (r, N-") from these for all r, and so on down to

2
V2 (r, 0). This can be done by simple calculation since the

-19-




entire right hand side of the equation is constant except for values of
V2 ( r, N) which we assume we know. Thus, the eatire problem re-
duces to finding the values along some value n. If we were approx-
imating the infinite case by a finite duration case, we could just assign
termination values at some large value of n and iterate back, but
finding the termination values discussed iu Section 3.2.4 is itself a
very difficult problem. A much simpler approximation is to say that

for some large value of n, say n=1000, we (virtually) know the value

of p with certainty as being -rzx— . Thus,

1 2
= l
VZ(I‘.N) Max {VZ(P ) v, (P )}
where P . is the known matrix with p=r/N.

We have used this computational device to evaluate the deci-
sion boundaries. The use of discounting assures us that if we take N
large, the terminal values assigned there will not make very much
difference in any case, and experience has shown that values of N

around 50 yields results almost identical to values around 1000.

3.5 Computation Results

A computer program was written to find the solution to this
two state problem. Its specific objectives were to illustrate the shape
of the decision boundary, the speed of convergence with N (the assumed
“infinity''), the sensitivity of the decision boundary to the discount factor,

and the shape of the isovalue curves in the {r, n) plane.

Several problems were run with different values of 8, P2 and

N to illustrate these various properties.

For the first 6 problems the decision boundary points are

plotted in the (r, n) space (see graphs following). These are the points

-20-




where it is fr_st best to pick the alternative 1 when in state 2. or
instance, in the second problem ( see graph 2), if we had n=10,

r =8, we would decide to follow policy 2 in the next transition. How-
ever, if n=10, r=9, we would follow policy 1 in the next transition
(and hence, >rever, since r and n will not change). The problems

and parameters are:

1) ﬁ=.9,N=50,P11=-;’-,p;2--;_
2) B=.9999,N=50,P11=%,p;2=_%_
3) [3=.9,N=50,P11=-%-,P;2=%
4) (3=.9999,N=50,P11=-%-, p;2=%
5, [3=.9.N=50,P11=—i—,p;2 =_‘11_
6) ﬁ=.9,N=1000,P11=%,p;2=.%.

The purpose of the first 6 cases is to illustrate the shape of
the decision boundary and how it changes with the value of the discount
factor PB. Notice that for small values of B the decision points stay
very close to the boundary under certainty ( straight live below the points).
Only for larger P, where the future has great importance, does the
boundary move away from the certainty case. In the limit (as B approaches

0
one ) the boundary approaches the 45  line--experiment forever.

Comparison of Figure 1 and Figure 6 illustrates the speed of
convergence with N for B =.9. Figure 6 also shows the asymptotic
behavior of the decision boundary. Notice that the decision points remain
the same for N = 1000 and N = 50 except for those near 50. For N = 1000

the decision boundary remains parallel to the certainty boundary for as

-21-




far out as we have investigated.

The next series of graphs is concerned with a continuous
decision bou .dary and isovalue curves obtained by linear interpola-
tion. The significance of interpolated values is that if the value
function V (r,n) is defined for all r and n, and is relatively smooth
and ﬂat., then the values can be approximated by interpolation. Graph
#7 shows V (r,n) plotted against r for several values of n. Apparently
the value fupction is indeed smooth and flat enough to justify interpola-
tion between the valnes on the lattice. However, since at the assumed
horizon n is an integer ( =50) and r is also taken to be an integer for
decision purposes; the results that follew donot have much operational
meaning, and are helpful only to get a rough idea of the bahavior of the

value V2 (r,n).

The next graph, #8, shows the decision boundary found by inter-
polation for three values of f. The significant feature of these curves
is their "lumpy“ nature. The end points of the lumps occur at integers,

where decisions could be made.

The next two graphs show isovalue curves. Isovalue curves which
are for values of V2 (r, n) close to the n-axis appear to be straight lines
and have a slope which is very close to the slope that the value under
certainty function has. However, they do not pass through the origin when
extrapolated. Rather, they have a small positive intercept. For isovalue
curves with values close to the certainty boundary, though, the lumpy
appearance shows up again. We have not been able to provide a satisfac-i

tory explanation for this phenomenon.
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3.6 Conclusion

In this chapter we have considered the exact solution to a
simple two state case. We have shown the dynamic progremming
method of solution, and the numerical solutions for several values

of the problem parameters. The conclusions drawn from this work

are:

1) When B - .9 or smaller, the value under certainty gives
a good approximation to the value under uncertainty for n
greater than 15 or 20. The isovalue lines are displaced
upward slightly from the isovalue lines of the c:rtainty
case, but their slope is undisturbed.

2) As P is increased from .9, the effects of uncertainty are

more pronounced. The decision boundary bulges upward
and becomes lumpy. Isovalue lines near the boundary are
similarly affected, though those far from the certainty

boundary remain remarkably straight lines.

Now that we have considered the nature of an exact solution
for a simple case, we will discuss in the next section the difficulties
encountered in trying to apply this method to even a slightly larger

problem.
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CHAPTER IV

INFEASIBILITY OF A DYNAMIC PROGRAMMING
SOLUTION FOR AN N-STATE PROCESS

4.1 Terminal Analysis

We demonstrate the infeasibility of dynamic programming by
formulating the equations for the general case, and showing that their

solution requires a prohibitive amount of calculation.

As in the special two state example presented in the last chapter,
we approximate the infinite case by a long finite process with terminal
rewards. We calculate the terminal rewards by assuming that we must

h
choose a policy at the 0t stage which we will follow forever.

Exactly as in the two state case we define:

VL(ml 2 i1 k N
; R DR T U TR TR NN

as the present discounted value of the infinite reward stream under the
optimal strategy given that we are now in state i with L decisions left
before the terminal decision. The decision stage is now defined as just
the period (holding time) of the process, since a decision must ir. general

be made in each state.

This value is obviously a function of all our present knowledge, so
all prior parameters appear. For simplicity, we denote the matrix of

prior parameters by M, and write ViL (M).

Finally, at the terminal stage we assign a policy, and the present
discoun*=d value of a policy given the transition probabilities can be computed

by the formulas of Chapter I. So:

Max S A A i

0
VvV - e, P P
M) = o policies & { Vi R

i B M)
A
P

\
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A
where, as usual, %" (P ) is the present discounted value of being

in state 1 under policy A when PA is known.

1.2 The Recursive Equations

If we are now in state i and following alternative k with L
stages left before the terminal decisions, we can go to any state j
~ b
~ith probability pij . If we go to j, we earn rij immediately, but
L-1
as of next period we can expect V' (M'), where M' is the matrix
. . — - . k
of posterior parameters given the transition from i to j. Let Ii'
denote a matrix of zeros except for a single one in the position corre-
k
sponding to m_,,. Then:
1
N
~k k . L-1 k
VE (M) = Max (B[ ) BE Lrl v 8 vET mer)]]
1 K 1) 1) J 1)
j=1
This expectation is seen to be linear in pij » 30 we can just use the
statistics of the expected process. Thus:

N
vim) = MEGS L ) ek vET (mer)
=1
These equations closely resemble the ordinary equations for deter-
mining an optimal policy with known transition probabilities, except
that now Vi (‘) has different arguments on the two sides of tne equa-

tions.

4.3 Conclusion-

There are difficulties inherent in solving both the terminal
and the recursive dynamic programming equations. The form:

Max

0
Ve LIRS S

Elv, (F%) | M)
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is itself virtually intractable, as it involves a very complex multiple
integration. But, as will be discussed in the next chapter., it may be

appropriate to say that:

where PA is the matrix of policy A in the expected process. In this
case, the terminal equations could in fact be solved by ordinary policy

iteration.

Given V(i) (M) for all values of M, there is no theoretical
difficulty in solving the rest of the problem. The only trouble is one
N
of dimensionality. M is a ( Z kj x N) matrix, and the state super-
j=1
script i can run from 1 to N. If we set even so modest a task as to
tabulate for each integral ml,:j in the interval ( 1,100), we find that

each decision scage involves:

S
N . (100) ¢ J

tabulations. Even for very small problems this is impossible. For

: : 24 :
example, our taxicab example would require 3x100 tabulations for
each decision stage. To reach convergence would require at least 100

E
stages, so 3x10 il calculations would be required.

But even though a dynamic programming solution is infeasible,

it does provide us with a compact formulation of the problem, and a
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clear notion of what a solution is. If we let L. grow very large so that

L becomes indistinguishable from (1. i), then the problem can be

1 aLCd -

For every possible prior matrix M and every state i, specify

%
that alternative k such that:

Max k k k
v = M el e ) el v (Mer)]
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CHAPTER V

DISTRIBUTION OF LONG RUN AVERAGE GAIN

S, 1l Steady state probabilities

One measure of effectiveness for a Markov process without dis -
counting is the long-run average gain, which is defined as the sum of the
products of the immediate rewards by the corresponding steady state

probabilities:

Both the q's and the 7's depend on the transition probabilities, so that in

the case we are studying, they are both rundom variables.

~7
E. A. Silver has shown that the E ( ﬂj)'s can be approxima:ed by
the 7 .'s of the expected process when the transition probabilities are

(3)

multidimensional beta distributed. The accuracy of this approximation
was shown by using simulation techniques. His results also indicated that

the approximation became better as the Ni 's increased.

This result csheds partial light upon our problem, but does not go
quite far enough. Our primary interest is in the product of the « 's with
~

the 'q 's, and it is the behavior of this statistic that we shall study in the

following sections.

5 w2 Distrib ‘ion of gain for a given policy

In order to know how bad it might be not to follow the optimal

policy, it is useful to have some idea of:

g7




a) What the distribution of gain is like for a given policy, and
h) How that distribution differs for various policies?

The second question could be answered by the first if we found the
distribution of gain explicitly in terms of the prior parameters of the

policy.

It is necessary to point out that throughout this chapter we will be
dealing with terminal analysis; that is, the same policy will be followed
forever. This is a first step towards the analysis of the general problem

which allows the policy to be changed at any time.

-

5.2.1 Simulation runs

In order to study the distribution of the gain, a sampling program was
written. This program receives as data the prior parameters of a Marlkov
process witli one alternative in each state (thus there is only one policy; a
necessary restriction here since gain is associated with a particular policy).
The program produces sample processes from the prior parameters and
computes the gain cf each sample process. The range of the gain is divided
into several intervals and for each interval a count is kept of the sample gains
in that range. This provides a histogram of the distribution. Besides, a

sample mean and variance is computed. (See Appendix A.14)

We have studied five particular processes. The first is a five -state
process wirth probabilities and rewards drawn from a random number table.

The other four were selected policies of the three-state taxicab problerm.

Each time a process was studied, the prior parameters Ni were the
same for all rows (states). For different computer runs, different values

for the Ni were selected. Thus, the behavior of each process was studied

-38-




for four different values of the Ni: 25, 50, 100, and 150. There were
also three miscellaneous runs. One was the five-state problem but the
rewards (which had a range of zero to ten) were replaced by their ten's
complement. The second miscellaneous process was the regular five-
state problem, but with different values of Ni for the various states

(the average value was 100}. The last run was policy (2, 2, 2) of the
taxicab problem, but only 25 sample processes were drawn to see how
accurate statistics could be obtained by very little sampling. There were

23 runs in all.

5.2.2 Results of the =.mulation

The sampling experiments described above yielded only limited
evidence of the system behavior. The experiments were in most respects
exploratory rather than aimed at testing any one particular hypothesis.
Even so, there are certain results that seem significant enough to be men-
tioned here. The follow.ng conclusions are substantiated by the accompany-
ing graphs and tables.

E. A. Silver has shown that the general form for the 7rJ_'s involves

NN-l cross product terms in the numerator (for an N state process), and
N cross product terms in the denominator. We originally hoped that for
large processes, the law of large numbers might come into play, and that
the distribution of the gain would be approximately ncrmal. This was one
of the reasons we tabulated a sample mean and variance when plotting our

histogram.

a.) When the distribution of the gain is plotted on probability paper,
it does approximate the normal for larger processes. Also, the larger the
value of Ni’ the more normal the distribution appears. The mean and
variance of the normal are very close to the sample mean and variance com-
puted. But, however encouraging this result, it should be mentioned that a

chi-square analvsis nows quite decidedly that the distribution is not normal.
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[h other words, the normal is clearly only an approximation. Since the
N : £
N  terms mentioned above are not independent, the law of large numbers

need not apply, even for very large processes.

b.) For a given process, the product of the sample variance and
the comumon valae of the Ni 's appears to be more or less constant. This
suggests that given the constant ( which is seen to vary from process to
prucess ), we could predict the variance merely by knowing the prior para-
meters Ni when they are the same in every state. Our miscellaneous run
indicates that the statistics do not change much if the Ni are slightly

different--we can just use their mean value.

c. ) The mean value of the ga:n is approximated well by the gain
of the expected process, and this approximation becomes better and better
as the prior parameters Ni increase. Thi: is an extension of E.A. Silver's

~e:sult that the above is true for the 7Tj alone.

d.) Sometimes the gain of the expected process is larger than the
sample mean, and other times it is smaller. The two cases are illustrated
by the case where we took 10's complement of all rewards. We have deter-
mined no a priori way of determining which case will pertain in a particular

“process.
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Policy

&) &

1,2, 2

2,1,2

202 )8

RESULTS OF SIMULATION OF TAXICAB EXAMPLE

25
50
100
150

25
50
100
150

25
50
100
150

25
50
100
150

25

£

13. 34

18: 15

8.8l

12.89

13.34

E (g)

14.
13,
L 8.
13.

14.
I3:
] 3.
1.3,

13k
1'2s
12.
12

L3¢

2]z

04
42
39
44

04
31
23
32

8.67
8.72
8.

8.79

79

93
96
93
92

e

500 sample processes for each simulation

var (g)

1.3047
. 6399
. 3401
. 2458

1.1378
. 6784
. 3098
n 2117

. 1107
.0504
.0228
.0201

1.2716
. 7494
. 4604
. 2688

1.5228

N- Var (g)

32.
32.
14,
36.

o O O u»

28.
34.,
81.
30.

w» O O

2T
.52
128

.01 (only 62
samples)

w v VN

8.
3.
46.
40.

w O u»v o™

(25 samples)




RESULTS OF SIMULATION ON FIVE-STATE RANDOM PROCESS

Number of
Samples

N g E(g)  Var(g)

25 4.69 4. 60 .0683

50 4.67 .0365

100 4.68 L0167

150 4.69 .0096
different 4.68 .0155
ave = 100

1" 31
Reversed rewards case

150 5.38 B.39 .0091
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1.7075)
1

1

825

. 670
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(in %)

Cum. Prob.

5n-3 Limitations and suggestions for future work

In concluding this chapter we would like to point out some of the
limitations of our research intc the distribution of the long run average

gain.

In the first place, we have studied a very limited number of
processes (only five), and they have been of small size (three-state and
five-state). It would be quite desirable to study more problems of larger

size to test the generality of our results.

Second, in ail the processes studied (except for one) all the Ni 's
had the same value, and only four different values were cunsidered. A
few processes with larger Ni 's should be studied, as well as more pro-
cesses where the N, 's for the same process have different values in

different states.

Third, we did not study the effect of different reward structures
on the same transition probability structure. Whether the two can be

separated is a question which should be studied.

Fourth, all the processes studied in this section were processes
with only one alternative in each state. It would be interesting to investi-
gate the general case with alternatives. There would be two ways to
approach this. The first would be to take some selected policies and study
the distribution of the gain for each one separately (1o some extent, we
did this with the taxicab problem.) Another way would be tc take the prior
parameters for the entire multi-alternative process and to sample complete
multi-alternative processes from this. Each sample process could then be
solved for the optimal policy, and sample optimal gains could be recorded
{and perhaps also compared against the sample gains of some fixed policies)
A good number of sample processes would be needed for this program--muany

times the number of policies (which is itself a very large number).

e 4I5.




Fifth, the processes studied have always been completely ergodic.
I. should be interesting to study the behavior of processes with transient

states, and/or multiple chains.

Sixth, we mentioned before that we couid predict the variance for
larger values of Ni' given the "constant" product of some Ni and its
variance. We should note, however, that in actual processes when Ni
changed due to cbservations, the mean values change also, so that in
practice different values of Ni are associated with different expected
processes. We have not shown that the constant’ remains constant
under such operations, but just what it does do would be an interesting

question for study.

5.4 Conclusions

With 2 ! the limitations pointed out in the last section, it would
be very presumptuous to state any general normative rules. However,

it seems safe to say the following:

a.) When the prior parameters Ni are large enough (and 150
seems large enough for five state processes), it is a good approximation
to assume that the process is known with certainty and that the probabilities
are given by the expected process. The value obtained from the expected
process is almost identical to the sample mean obtained by simulation, and

the sample variance is almost negligible.

b.) Even when the Ni are quite small (say 25 in the five state case),
the gain of the expected process is close (say 1/2 standard deviation) to the
sample mean, and the standard deviation is only about 10% of the mean

-1/2'

value. Moreover, this figure falls as N
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CHAPTER VI

HEURISTIC METHODS

6.1 General considerations

We have previously discussed the analytic difficulties which lead
us to a heuristic approach. In this chapter vre consider some approaches
to the problem which are empirical or intuitive in nature, present some

experimental results, and suggest possible extension and generalizations.

The basis for most of the heuristics is that some sort of trade-off
is implicit in our problems. On the one hand is the immediate expected
reward to | 2 earned from the process if we follow the optimal policy of
the expected process, but on the other hand is the possibility of finding
a still bettexr policy by further experimentation with relatively unexplored
alternatives. It will be noted that, %th the exception oAf t};: first and
simplest heuristic, all of the suggested approaches have one or more para-

meters which attempt to measure this trade -off.
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6.2 Follow optimal policy for expected process

This is, conceptually, the simplest possible heuristic. After
every transition we perform a Bayesian modification of our prior. Then,
using the matrix of expected values, we determine the optimal policy to

follow for the next transition.

Ubviously, a single transition is unlikely to greatly effect the
policy decision, and it would be expensive to re-examine the policy every
period. So for purposes of experimentation, we chose 50 transitions as

a convenient and reasonable period for re-examination.

Since this heuristic seems the one that would naturally be used
in the absence of some more sophisticated analysis, it is worthwhile to
examine it here. In the first place, the trade-off between immediate
gain and infermation does not exist in this heuristic. There is no mechan-
ism which explicitly forces unexplored policies to be observed in early
stages. Therefore, if it should happen that there is some very good policy
which a priori seemed quite bad, it is entirely possible that this heuristic
will never provide the information needed to recognize the policy as being

better than originally thought.

On the other hand, if a policy looks very good a priori, and happens
to be not so good after all, the heuristic will quickly reveal this. Indeed,
since Bayesian modification of the prior is continually taking place, this
not-so-good policy will soon become only second best in the matrix of

expected values.

Thus, this first heuristic provides one kind of information, but not
another. If a good policy looks bad, we may never find this out. But if
a Lad policy looks good, this is discovered quickly. In practice, even the

first kind of information may be obtained; the original best becomes only
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second hest and experimentation begins with an unexplored policy, which
may begin to look better. Moreover, in exploring a policy, say [ 2,2,1].

we are also indirectly exploring policies [ 2,1,1], [ 1,2,2], etc.

We expect then, that when the true transition probabilities of the
process are likely values of the prior distribution, this heuristic method
should perform very well. Fowever, when the true transition probabilities
are in fact far from the prior expectaticns, then the initial policy may
well be a poor ore, and may even fail to generate the information very

quickly to indicate that in fact it is an inferior policy.

This last surmise was verified by deliberately choosing an unlikely
sample point from a prior distribution, so that the best policy of the actual
process looked quite poor, a priori. The process and prior are displayed
as Run 1 in Appendix B. Note that in 15 iterations 50 observations each,
the true optimum was never explored or discovered--rather, the same

apparent optimum was chousen every time.

What is needed is an exhaustive verification of the first assertion,
that in an expected value sense, this heuristic will provide very satisfactory
results. Simulation with a large number of sample points from a very
large number of priors would be needed to establish the assertion quanti-

tatively.

As an example of the type of simulation needed, and to get some clues
as to probable outcomes, we constructed Run 10 ( Appendix B 1.2). Here we
utilized a prior and rewards drawn frora random number tables, and sim-
ulated for five sample points. The results were surprisingly good, the
optimal policy of the expected process was almost always the optimal policy
of the sample process, or so close to it that we are earning 96+ % of what

we could have earned with perfect informat on.
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This figure seems to be quite satisfactcry, especially as it improves with

time as our knowledge becomes more complete.

More simulation of this sort should be carried out. But we turned
our attention toward heuristics which would meet the challenge of extreme

points from the prior.

6.3 A trade-off between immediate reward and information

We will now establish measures for immediate reward and for in-
formation, and we will then explain our proposed trade -off heuristic. It
k . . :
has always been noted that the q; can be interpreted as immediate expected

rewards. And a rough and ready estimate of information inherent in an

k
alternative is NI: = z mI:J, , the larger Ni , the more information we have
J

about the alternative.

We now define the quantity WI: = (qli( - q:nin) a/Nli(. Here a
is the trade-off constant. The so aefined w:( is large when either 1) the
relative immediate reward is great, or 2) the current information is scant.
Thus, our heuristic is to choose a policy by maximizing wli( in each state.
We then observe under that policy for a number of transitions NOBS which
is proportional to the smallest of the W, in the policy. That is, if the
relative immediate rewards are all very great, or the current information
in each state is very small, we observe for a long time: NOBS = f° W oin
This heuristic is displayed as MAIN 2 in Appendix A.

Our experience with this heuristic indicates that the parameters a

and P are quite problem-dependent, and that the policie: sclected are very
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sensitive to changes in either parameter. For a solution to our sample

problem using this heuristic see Runs 2, 3, and 4 in Appendix B.

6.4 Vieighted immediate reward technique

k k
In this heuristic, we weight each q; by a factor C before apply-
ing the policy iteration algorithm for finding the optimal policy. The
weighting factor is similar to the one used in the previous section. Now:

k k k
c, = (a qi/Ni)+l.

Note that as the number of observed transitions becomes very large,
k
the weighting factor <, approaches 1, so eventually we converge to the

optimal policy of the expected process.

Having found the optimal policy by this technique, we observe under
the determined policy for a number of observations NOBS calculated to
bring the cl: down as low as the minimum such value in the state. This is
done to minimize the chances of simply re-determining the same policy.

To be explicit, NOBS for the policy A is chosen to be z X, where the

x . satisfy: i
1 an
, " .
n']‘{m ¢ = —h— for all i
N. + x
1 1

It may be that X, = 0 for some i, which means that the cl; associ-
ated with the optimal policy is already the lowest in the state. If a given
alternative appears in the optimal policy in spite of having the lowest weight -
ing factor, then it must be a very good policy indeed. So, in this case we
set X, = g °N:\. That is, if this good policy has a lot of information to

back it up, we observe for a long time.
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Runs 5-9 listed in detail in Appendix B, were made using various
values for a and B. In all cases, we eventually converge on the expected
optimum, since the weighting factors approach 1. But hopefully, this
heuristic will also handle extreme points from the prior. The problem

then becomes a speed of convergence to the uoptimum.

To get a measure of speed of convergence, we define an efficiency

by
Expected actual earnings
Expected optimum earnings

EFF =
Plots of efficiency versus accumulated number of observations are
given in Appendix B.3 for different values of a and .

It can be seen from these graphs that convergence is not terribly
rapid. If a small discount factor were operative, this convergence could

be quite unsatisfactory.

6.5 Weighted variance technique

This heuristic is a direct attempt to measurc the trade-off between
immediate gains and information. As our measure of information, we turn

to an analysis of variance.

We first look for an expression for the expected decrease in the
variance of the marginal distribution of a P.. if we make one observation
of the process let us denote this quantity by d?j . This quantity gives
some idea about how much will be learned about a particular transition
probability if we observe one transition. But some transitions are more
important than others; namely, those with high rewards. (This is only a
first approximation, as those which put us in states with high expected
returns are also important). Thus, we weight each d?_ by the correspon-
ding rl:j to obtain a row sum sl; . This we call the "total weighted
expected change in variance, ' and assert that it is a dollar measure of

information to be gained.
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Next, we ask how we can measure the ' cost of obtaining informa -
.ion. " Suppose we want to observe a particular alternative k in state
i. Let O denote the optimal policy for the system, and A denote the
best policy which uses alternative k in state i. Then go - gA provides

a measure for the expected loss from experimentation.

Then we can state the working of this heuristic: for our present
system state we find the alternative which maximizes slz; that is, the
state with the greatest expected information gain. We then find the cost
of experimenting by computing the approximate go - gA, and compare
a weighted value of sl; to this difference to decide whether to use the
optimum alternative of the expected process, or whether to experiment

to gain information with alternative k.

. : k :
We have now to define the quantity dij , that is, the expected
decrease in variance from one observation. We first recall the Bayesian
theorem that

mea.. of posterior variance + variance of posterior mean = prior
variance

prior variance - mean of posterior variance = variance of posterior
mean

The left hand side of this equation is precisely what we mean by dl;j , SO
that

k g :
d.. = variance of posterior mean

1)
This is a general result, true for any distribution and for any amount of
sampling. Let us consider the case at hand, a multidimensional beta and

one sample. Then the posterior mean is:
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where r has a beta-binomial distribution. The required variance is:

k 'nl.(. (Nl.( - mk)
do= _ij i ij
2

(N2 (NS + 1)

Thus, s‘: is defined by:

3k= L Z m.k. (Nl.(-m.k)rlf.
k k !

2 al .
(N7} (N +1) j=1
i i
Again we mention after each transition, this calculation must te
made for the state currently occupied to determine whether to use the

cptimal or experimental alternative.

It should be noted that this is also a convergent scheme in that
eventually all of the variances go to zero, so we always follow the 'optimal'

rather t1an the experimental alternative.

6.6 Suggestions for future heuristics

Unfortunately, most of the experimentation with the heuristics
discussed in this chapter took place early in the project--before we had
a clear idea of just what information we wanted to get from our simulations.
From our present point of view, we can suggest several further experiments

which should be performed:

La) An "expected value'' evaluation of the first heuristic (follow optimal

policy for expected process) must be developed. This will involve applying
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the heuristic t. many random draws from the prior to measure its
effectiveness.
2.) We feel that heuristics 2 and 3 are inferior because their para-

meters are too problem dependent. However, it may be that if a class

of problems is to be solved, it would pay to get values for the parameters
for some members of the class, and use these values for all members

of the class. When appropriate parameters are used, convergence is
very good, but we are in doubt as to whether that is a prior or pocterior
fact: did we perhaps just find parameters which happen to give good

results given both our prior and the sample points ?

6.6.1 A possible heuristic

The investigation on the distribution of the average long-run gain
described in the last chapter has given rise to a heuristic which we have

not yet tested, but which looks like it might be effective.

Recall that the limitat.on in following the optimal policy of the
expected process was that we considered only immediate rewards, and
not the possibility of gaining information. We consider now using a
modification of policy iteration to find, instead of only the optimal policy
of the expected proucess, the 10 best or so. We could then use simulation

or the predictive results of the last chapter to estimate both the mean and

variance of the gain for each of these policies. This would give us measures
of both immediate gain and uncertainty, so a trade-off could be established
between them. There is much to be learned about a high-variance policy,

and much to be gained from a high-mean policy.

It might also be wise to check for excessively high variances before

entering the above routine, and force tests to eliminate any such.
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As is demonstrated in Appendix C, it is impossible to modify the
policy iteration imethod to produce the 10 best policies; but Appendix C
continues to present an approximation procedure ior finding N of the

best policies in an N state process.

There are several experiments which we can suggest as useful

for evaluating this heuristic:

1.) By simulation, explore how much actual overlap there is in the
range of g for different ”good " policies. That is, would a ''second best"
policy have a good chance of having a large percentage of its values of

g being above the E oi the best policy?

2.) Check by simulation whether for two policies A and B, the relation-
ship between E (g‘A) and E( EB) is indeed similar to the relationship
between gA and gB . If this is not the case, knowledge of the ''10 best"
policies of the expected process does not tell us anything about the "o

best " oi the primary process. Our previous experimentation with distri-

bution of gain suggests that the required relationship will hold.

3.) Check, low g and high 0'2 , whether g is equally likely to increase
or decrease. If it should happen to decrease more often than increase
(which could be a structural property of this type of process), experimenta-

tion with high-variance policies might not be as good an idea as it appears.

On heuristic grounds, this technique seems to be sound. We
conclude with a summary of the technique, and a suggestion that it be

evaluated:

1.) Find N best policies
2.) Determine mean and variance of the gain for each policy.

3.) Choose a policy by maximizing a weighted sum of mean and
variance.

4.) Use that policy for a while; then up-date prior and repeat.

<.




CHAPTER VII

CONCLUSION

The most basic conclusion which emerges from our research
and experimentation is that the expected process gives a surprisingly
good picture of the primary process. Even for relatively small values
of the parameters Ni' the basic statistics of the expected process are
good approximations to the expected values of the corresponding statis -

tics for the primary process.

This result lends experimental justification to the most natural
approach to the problem. In most current applications, the transition
probabilities are not known with certainty anyhow; and some sort of
"best estimates ' are used. The Bayesian analysis only suggests a
formal way of providing these best estimates, and for up-dating them

in time.

Still, far more simulation experience is needed before these
conclusions can be stated with certainty. It may still be that extreme
points from the prior will present enough difficulty so that the expected
process approach will not be good in an expected value sense. If
further research should indicate that this is the case, then the heuris-
tics dealing with variances as well as means would become more

relevant, and would have to be carefully evaluated.

It appears at present that an exact solution to the problem is not
feasible. Some sort of approximation procedure will be necessary to
handle any good sized problem, and the remaining question is only:

which approximation is best ?

Finally, there is the matter of relative cost of obtaining solutions.
In this regard, it is significant that the expected process cechnique is so

easy to apply. Essentially, it involves only policy iteration, which
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Dr. R. A. Howard has shown to be quite practical even for problems

with 50 states and 50 alternatives in each state.

Thus, it seems that heuristic methods provide a feasible and
useful mean of dealing with Markovian decision processes with un-

certain transition probabilities.
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APPENDIX A

DETAILS AND LISTINGS OF COMPUTER PROGRAMS

A.l1 General Description

Our project called for the testing of many different heuristics,
and to facilitate this task, we decided to write our computer programs
in blocks, using the subprogram feature of 7090 FORTRAN. Each block
was désigned as an independent unit, fulfilling a particular task. Then,
design of a new heuristic merely required writing a short program to
couple these blocks appropriately. Briefly, the subprograms are:
IPUIT: Reads in an entire process ( prior parameters and

rewards).

VALUE(L): A programmed version of R. A, Howard's policy
iteration algorithm. Used to find optimal policies
and gains.

ITER(L): Used in conjuction with VALUE.

OBS (NOBS): Simulates NOBS transitions of the process and up-
dates the prior accordingly.

ISIM(IPRES): Called by OBS, this subprogram merely simulates
a single transition and reports the outcome.

OPUT(I,N): Causes the printing of results.

PRIOR: Restores the original prior in place of a posterior.
Reinitializes between runs.

GEN: Draws a random sample point from the prior distri-
bution.

We now turn to a more detailed account of the subprograms and

the MAINS used to tie them together.
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A.2 Subroutine IPUT

The source statement CALL IPUT causes the following cards to

be read in:

1.) NS, or number of states in format 12.

v
—

NA(I), or the number of alternatives in each state, in format
12, 3X, 12, 3X, etc.

3. ) Cards with the prior disiribution. Seven entries per card, 10
columns per entry. First the P (I, J), then Ni (all in floating
point ).

4.) Cards with the rewards. Seven entries per card, 10 columns
per entry.
The program stores the values in the proper locations, computes
the q. values, and checks that all probabkilities add to one. If an error
i

is found, the message

PROB NOT =1 IN ROW

prints, and the program terminates. The prior is stored in its workiny

matrix, but also in OPR for reinitialization.

A.3 Function VALUE (L)

This function is called by a source statement of the form

GAIN = VALUE (L)

If L=1, it computes the relative vaiues \ for the actual probabilities

under the current policy.

L =2, it computes the relative values ) for the actual probabilities under

the optimal policy.

L =3, it computes the relative values v, for the prior probabilities under

the current policy.
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L = 4, it computes the relative values v for the prior probabilities

under the optimal policy.

L = 5, computes the q; values for both actual and prior probabilities.

GAIN, which is the long run expected gain associated with the
computed values v is returned as the functional value. If an optimal
policy is computed, it is left in the K(I) vector of common storage.

The values are always left in the V(1) vector of common storage.

Thus, for example, the sta*tement GAIN = VALUE (4) would
cause the optimal policy of the expected process, along with its values

and gain, to be computed.

A. 4 Function ITER (L)

This subroutine is called by the VALUE subprogram, and
corresponds to the "policy improvement" phase of R. A. Howard's

algorithm.
If L=1, it improves the policy assuming actual probabilities.

L =2, sameas L =1.

L =3, it improves the policy assuming prior probabilities
L =4, same as L = 3.

L =5, it chooses an initial policy for the actual probabilities by

maximizing q; in each state.

L = 6, it chooses an initial policy for the prior probabilities by

maximizing 9 in each state.
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It is called by a source statement of the form
IOPT = ITER (L),

and IOPT is returned as 1 if the policy did not change (optimum found), and

as 2 if the policy did"change ( optimum not yet found).

A.5 Subroutine OBS (NOBS)

This subprogram is called by a source statement of the form,

CALL OBS (NOBS)

It simply causes NOBS transitions to be simulated using the actual
probabilities, and the frequencies to be tallied. After the observations
are completed, the subroutine performs a Bayesian up-dating of the

Prior before returning control to the main program.

A.6 Function ISIM (IPRES)

This function is called by the OBS subprogram, and it is this
subroutine which actually does the simulation of transitions. A random
number is drawn fiom a retangular (0, 1) distribution, and this random
number in conjuction with the transition probabilities determines a
transition. The new state is reported back to CBS, and the latter program

records it, etc.

A.7 Subroutine PRIOR

This subroutine simply reinitializes the prior matrix, and calls
GEN to supply a new sample process. PRIOR is the recycle point of all
the MAINS.

A.8 Subroutine OPUT (I, N)

This subroutine performs several different functions, since many

types of output are needed. Ostensibly, I is the iteration number, and N
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is the number of observations in the iteration. If both I and N are

non-zero, normal output results. Normal output consists of the follow-

ing:

1.) The iteration number I

2.) The number of observations N

3.) The estimated gain, or gain of process using prior probabilities

and current policy. The program assumes that this quantity has been
computed and is in the common storage location GAIN.

4.) The actual gain of the current policy. This is computed by the
OPUT subroutine from the actual probabilities before printing.

5.) Accumulated number of observations. A quantity computed by
OPUT.

6.) Efficiency. This too is computed by OPUT, and is defined by:

Previous accumulated profit + (no.obs.)x (actual gain)
(Optimal actual gain of process)x (accumulated no. of obs.)

’

where the numerator becomes the new previous accumulated profit. The
optimum actual gain of the process is known by OPUT (see below).

7.) The current policy being followed. This must be in the K(I) vector
when OPUT is called.

The source statement CALL OPUT (I, N) causes a single line with this
information to be printed, if both I and N are positive. But, I can also

serve two control functions:

104

This causes the process information to be printed. The prior,

reward, and actual probabilities matrices are all printed, and control
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is immediately returned to the main program.
I<0

This causes initialization preparatory to a new run. The actual
optimum gain is computed and stored for later use in computing efficiency.
Then a header is printed to identify later output. Finally, a line identi-
fied as iteration 0 is printed in which: estimated gain=actual gain=
optimum actual gain of the process. The policy indicated is the optimal
policy, and all other quantities are zero. The output from this section

lcoks like:

RUN NO.

IT NOOBS EST GAIN ACT GAIN ACCUMOBS EFF POLICY

0 0 (actual optimum gain) 0 0 (actual optimum
policy)

There is a special OPUT program for MAIN 4 which gives slightly
different output, and computes EFF on the basis of actually observed re-

wards.

A.9 Subroutine GEN

This subroutine is called by a source statement of the form
CALL GEN

The statement causes a sample process to be drawn from the prior and
placed in the "actual probabilities' locations. The q; values are computed

by GEN, and control is returned to the main pregram.
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The sampling is done according to the method outlined in section
2.4. As mentioned there, trucation is used to assure that all parameters

are integral, or else simulation would not be possible.

A.10 MAIN I

This is 2 programmed version of the first heuristic described in
Chapter 6: follow optimal policy for expected process. It needs a

parameter card with the following items:

1.) IPRES, present state of system (initial), in columns 1-2.

2.) NOBS, number of observations between recomputations of policy,
in columns 6-8.

3.) NOITS, number of iterations for each sample process, in celumns
12-14.

4.) IRUN, run number, in columns 18-19,
The process information should follow this card { see IPUT).

A process is generated and simulation for NOITS iterations of
NOBS observations each. Then a new process is generated, and so forth.
There is no provision for termination of the program, we just run until

running out of time.

A flow chart follows.
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A.1l1 MAIN 2

This is a programmed version oi the second heuristic described
in Chapter 6, a trade-off between immediate rewards and information.

The following parameter card is expected:

1.) IPRES, ‘nitial state of system, in columns 1-2.
2.) IRUN, the run number, in columns 6-7.
3 ) NOITS, the desired number of iterations, in columns 11-12.

4.) AL PHA, (see Section 6.3) in columns 16-20.
5.) BETA, (see Section 6.3) in columns 24-28.

The process information fullows this card ( see IPUT).

A process is generated, and simulation for NOITS iterations.
Then a new process is generated, etc. No termination is prcvided for--

program runs until stopped.
A flow chart follows.

A.12 MAIN 3

This is a programmed version of the third heuristic described in

Chapter 6, weighted immadiate reward technique. The parameter card

contains:

1.) IRUN, the run number, in columns 1-2.

2.) IPRES, the initial state oi the system, in columns 6-7.

3.) NOITS, the desired number of iterations, in columns 11-12.

4.) ALPHA, (see Section 6.4) in columns 16-20.
5.) BETA. (see Section 6.4) in columns 24-28.
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The process should follow ( see IPUT).

A process is generated and simulation for NOITS iterations occurs.
Then a new sample process is generated, etc. No termination is provided

for.
A flow chart follows.

A.13 MAIN 4

This is a programmed version of the fourth heuristic descr’..ed in

Chapter 6: the weighted variance technique. The parameter card cc.a.ains:

1.) IRUN, the run number, in columns 1-3.
2.) IPRES, the initial state of the system, in columns 7-9.
5.) NOITS, the desired number of iterations, in columns 13-15.

4.) CEE (see Section 6.5), in columns 19-28.
The process information follows the parameter card ( see IPUT).

A sample process is generated and simulation for NOITS iterations
occurs. Then a new sample process is generated, etc. No termination

is provided for.
A flow chart follows.

A.14 Distribution of gain

This ic a programmed version of the algorithm discussed in

Chapter 5. The first data card must be a parameter card:

1.) IRUN, run number, in columns 1-3.
2s) MAX, or maximum number of sample points, in columns 7-10.

3.) MTIM, in columns 14-17.




MTIM is used in conjuction with the MIT clock-interrupt, and
specifies the latest time at which sampling should end and output begin,
measured from the termination time of the program. If MTIM is set
at less than 200, it will insure that no output is lost by running over-
time, while it will not interfere with normal running if overtime would

not occur.

The program reads only one parameter card, but after each out-
put it returns to read the information for another process. So, by
stacking the information for several processes behind the parameter
card, any number can be investigated.

NOTE: Since gain refers to a policy, the process supplied
must have only one alternative per state.

A flow chart follows.

A.15 Solution of the special two-state problem

This is a programmed version of the solution routine described

for a two-state process in Chapter 3. It requires three data cards.

L)) BETA and NMAX, the value to be taken as infinity.

2.) The known probabilities P (1,1), P(1,2), P(2,1), P(2,2).

3.) The rewards for the known and unknown alternatives:
R(1,1),R(1,2),R(2,1),R(2,2),R(3,1), R(3,2)

All entries are 10 columns each, floating point, except NMAX which is a

5 position integer.

The prograrn prints a column of values for each n < 50, 0 =r =n.
When all columns have been printed, 2 summary chart of the decision

boundary is printed.
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12

14

15

18
19

A.l6 PROGRAM LISTINGS

SUBROUT INE 1PUT

SUBROUTINE FOR DATA INPUT

DIMENSION NA(16)oK‘lS)'AP(150916)’R(150’l6)oP(150917)¢V(159
DIMENSICN VI15) sWORK2(15)sA(15415)

DIMENSION OPR(150517)
COMMON OPR

COMMON NAoKoAPoR’P.HoV’NSoIPRES’GAINoIRUN
EQUIVALENCE (AsW)»s (W(226) sWORK?)

READ 12+ NS

READ 125 (NA(I)y I=1,NS)

NUM = NAI(1)
NA(1l) = O

DO 8 1I=1,4NS
NX = NA(I+1)
NA(I+1} = NUM
NUM = NUM + NX
NL = NS + 1

N = NA(NL)

DO 6 I =1,N

READ 11, (P(IsJd)y J=z1sNL)

DO 7 1I=m}leN

READ 11y (R(IsJ)s J=1,4NS)

DO 8 I=1,N

DO 8 JU=1,yNL
OPR(1sU)=P(1,4)
DUM = VALUE(5)
FORMAT (7F10.6)
FORMAT (I2+14(3X412))
DG 15 1I=x1,N

SUM = 0,0

SUM2 = 0,90

DO 14 JU=1,NS

SUM = SUM + P(],J)
ERF = ,000]

IF (ABSF(14-SUM)-ERF) 15518418

CONTINUE

RETURN

PRINT 19, |

FORMAT (21H1PROB NOT =
CALL EXIT

END

1 IN ROW ,12)
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10
12
13

15
16

18
17

21

20

la

11
30

FUNCTION VALUE(L)
VALUE SUBPROGRAM 10-16-63

DIMENSION NA(16)sK(15)9AP(150916)9R(150916)9P(150+17)sW(15+16)

DIMENSION V(15) +sWORK2(15)9A(15415)
DIMENSION OPR(150»17)

COMMON OPR

COMMON NAJKsAPyRsP yWsVeINSsIPRESsGAINsIRUN
EQUIVALENCE (AsW)s(W{226)9sWORK2)
IOPT = 2

NS“aNS-1

GO TO (191929293)sL

DO 4 1=1NS

LL=NA(TI)+K(])

WORK2(I)=AP(LLsNS+1)

DO 4 JU=19NSM

AlTeJd) = =AP(LLJ)

DO 8 I=1sNS

AlTol) = A(IsI) + 1,

A(TsNS) = 1o

CALL LINEAR EQUATION SOLUTION ROUTINE
SCALE = 1.

M = XSIMEQF(159+NSs19AsWORK29SCALESV)
GO TO (10911911)sM

DO 12 I=z19sNSM

VII) = A(Is1)

VINS) = 0o

VALUE = A(NSs1)

GO TO (14915514415 ) L

CALL ITERATION ROUTINE

IOPT = ITER(L)

GO TO (1497)s10PT

IF L = 3 OR 49 GO HERE

DO 17 I=1sNS

LL=aNA(I)+K(T)

WORK2(I) = P(LLsNS+2)

DO 17 J=19NSM

AlTed) 3 =P(LLsJ)

GO TO 6

IF L=%yCOME HERE

NSM = NA(NS+1)

DO 20 I=1sNSM

AP(TsNS+1) =0,

P(IsNS+2) = O,

DO 20 J=1sNS

AP(ToNS+1) = AP(IsNS+1) + AP(I+J)#R(I4J)
P(IsgNS+2) = P(T9NS+2) + P(19sJ)¥R(1,J)
VALUE = O,

FREQUENCY 7(191919791)91(15)95(15)+6(15)99(190+0)+10(15)
FREQUENCY 13(1919187)916(195)92(15)518(15)919(15)+21(15)
RETURN

ERROR EXIT

PRINT 30

FORMAT (23H NO SOLUTION FOR VALUES)
CALL EXIT
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FUNCTION ITER(L)
ITERATION SUBPROGRAM 10-16-63

DIMENSION NA(16)9K{15)9AP(1501
DIMENSION VI15) sWORK2(15)+A(15,
DIMENSION OPR(150+17)

COMMON OPR

COMMON NAsK9APsRsPyWsVINSHIPRE
EQUIVALENCE (AsW) 9 (W(226) sWORK
ITER = 1

DO 1 I=1sNS

TEMP = ~99999,

NTEMP = O

IMIN = NA(I) +1

IMAX = NA(I+1)

DO 15 M=IMINs»IMAX

GO TO (696979 T79899) L

TEST = AP{MyNS+1)

DO 11 J=14NS

TEST = TEST + AP(MyJ)%V(J)
GO TO 12

TEST = P(MyNS+2)

DO 13 JU=1,NS

TEST = TEST + P(MsJ)®V(J)
GO T0 12

TEST = AP{(MyNS+1)

GO TO 12

TEST = P(MyNS+2)

IF (TEST-TEMP) 15+16,17

IF (NTEMP = K(I)) 17»154917
NTEMP = M-NA(I)

TEMP = TEST

CONTINUE

IF (NTEMP ~ K(I)) 19,1419
I1TER = 2

K(I) = NTEMP

CONTINUE

RETURN

FREQUENCY 2(15)393(13)55(1451560
FREQUENCY 16(1+191)518(192,1)
END

6)9R(150516)sP(150+17)sW(15+16)

15)

SsGAIN,IRUN

2)

960+1+20)910(15)924(15)512(10+0+10)
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SUBROUTINE OBS(NOBS)

SUBROUTINE FOR CBSERVING THE PROCESS AND FOR
UPDATING THE ESTIMATED PROBABILITIES AND THE Q'S

DIMENSION NA(16)2K(15)sAP(150+16)sR(150+16)sP(150+17)sW(15+16)
DIMENSION V(15) 9WORK2(15)5A(15+15)
DIMENSION OPR(150+17)

COMMON OPR

COMMON NAsKsAPsRsPsWsVINSHIPRES+sGAINs IRUN
EQUIVALENCE (AsW)s(W(226)sWORK2)

NS1 = NS + 1

DO 2 1=1sNS

DO 2 J=1sNS1

W(leJ) = 0.0

PO 3 T1=21,NOBS

INEXT = ISIM(IPRES)

W(IPRESsINEXT) = W(IPRESSINEXT) + 1.0
W(IPRESsNS1) = W(IPRESsNS1) + 1.0

IPRES = INEXT

DO 6 1I=19NS

IF (W(IsNS1)) 1964

COMPUTE NEW Q(I)

IP = K(I) + NA(I)

OLDEN = P(IP4NS1)

P(IPsNS+1) = OLDEN + W(IsNS1)

PUIPsNS+2) = 0,0

DO 5 J=19NS

PUIPsJ) =(P(IPsJ)*®OLDEN + WiIsJ))/P(IPsNS+1)
PUIPsNS+2) = P(IPsNS+2) + P(IPsJ)%R(IP,J)
CONTINUE

RETURN

PRINT 501

FORMAT (10H ERROR 501)

CALL EXIT

END
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FUNCTION ISIM(IPRES)
SIMULATE ONE OBSERVATION

DIMENSION NA(16)’K(15)’AP(150’16)aR(150'16)’P(150’17)'V(15’16)
DIMENSION V(15)sWORK2(15)sA(15,15)
DIMENSION OPR(150917)
COMMON OPR
COMMON NAoK’ApvaPvH9V9N$9IPRES’GAINQIRUN
EQUIVALENCE (AsW)s(W(226) »WORK2)
IP = X(IPRES) + NA(IPRES)
AA = RANNOFI(X)
DO 2 J=1sNS
AA = AA - AP(IPyJ)
IF (AA) 3,43,2
ISIM = J
GO TO 5
CONTINUE
ISIM = NS
RETURN
END
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SUBROUTINE OPUT(IsN)
OPUT 3 ONE LINE OQUTPUT

I 1S THE ITERATION NUMBER

N IS THE NUMBER OF OBSERVATIONS IN THE ITERATION

DIMENSION NA(16)9sK(15)sAP(150916)sR(150s16)9P(150s17)9sW(15916)
DIMENSION V(15)sWORK2(15)9A(15515)

DIMENSION OPR(150917)

COMMON OPR

COMMON NASKsAPSRsP oW sVINSsIPRESsGAINs IRUN

EQUIVALENCE (AsW)s(W(226)sWORK2)

DIMENSION HOLD(15)

IF (1) 52432
Ir 1=0, PRINT MATRICES
3 PRINT 501+ 1RUN
501 FORMAT (B8HIRUN NO »s14)
PRINT ACTUAL PROBABILITY MATRIX

PRINT 505
505 FORMAT (26H1ACTUAL PROBABILITY MATRIX)
LA=1

13 PRINT 506s(LolL=1+10)
506 FORMAT (6X910(6X972)95X93HOBS»11Xs1HQ)
DO 9 L=1yNS
MAX = NA(L+1)-NA(L)
DO 9 KA=1yMAX
IP = NA(L)+KA
GO TO (6979+8) LA
6 FRINT S507sLeKAs (A (TPeJ)sJ=]1eNS )
507 FORMAT (1HO9I1291Hs12+2Xs10F844/(8X910F8¢4&))
PRINT 531y AP(IPsNS+1)
531 FORMAT (1H+999XsF10e4)
GO TO 9
7 PRINT 5134LsKAs(RUIPsJ)sJx19NS)
513 FORMAT (1HO9I2+1Hs12+2Xs10FBe2/(8Xe10F842))
GO TO 9
8 PRINT 5079sLeKAs(P(IPsJ)esJ=19NS )
PRINT 5209 P(IPsNS+1:sP(IPyNS+2)
520 FORMAT (1H++88XsF10s091XsF10e4)
9 CONTINUE
GO TO (10911912) » LA
PRINT REWARD MATRIX
10 LA = 2
PRINT 508
508 FORMAT (14HIREWARD MATRIX)
GO 70 13
11 LA =3
PRINT 514
514 FORMAT (29H1ESTIMATED PROBABILITY MATRIX)
GO TO 13
COMPUTE TRUE OPTIMUM POLICY.
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(ala

12
52

530

50 PRINT 50291 sN+EGAIN,AGAINIACCOBS+EFF s (K(J)9J=19NS)

502

16

RETURN
MAX = ITER(5)

OGAIN = VALUE(2)

PRINT HEADER

PRINT 530y IRUN

FORMAT (8H1RUN NO +14/51H

108S EFFs5X96HPOLICY)

EGAIN = OGAIN
AGAIN = OGAIN
ACCOBS = 0,0

PROF = (60
EFF = 000
1 =0

IT

NO OBS

EST GAIN

ACT GAIN ACCUM

FORMAT (1X9I1394X9s1491XsF104291X9F10e291X9F9e092XsFbe892X912514¢(

STORE CURRENT VALUES FO COMPUTE ACTUAL VALUES.

11Hy12))

RETURN

IF NOT 1=0,COME HERE
DO 14 KA=1sNS
HOLD(KA) = V(KA)
AGAIN = VALUEI(])
EGAIN = GAIN

DO 16 KA = 14NS
V(KA) = HOLD(KA)

FNOBS = N

PROF = PROF + FNOBS*AGAIN
ACCOBS = ACCOBS+FNOBS

EFF = PROF/(OGAIN*ACCOBS)
GO TO 50

END
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SUBROUTINE OPUT(IsN)

OPUT 4 FOR USE WITH MAIN 4 QNLY -- EFF IN TERMS OF REWARDS
1 1S THE 1TERATION NUMBER

N IS THE NUMBER OF TIMESS OPTIMUM WAS USED

DIMENSION NA(16)9sK(15)9AP(150916)9R(150+416)sP(150,17)sW(15516)
DIMENSION V(15)9sWORK2(15)9A(15,15)

DIMENSION OPR(150517)

COMMON OPR

COMMON NAIKsAPsRsPsWsVINSoIPRESsGAINs IRUN

EQUIVALENCE (AsW)s(W(226)9»WORK2)

DIMENSION HOLD!{15)

IF(I) 29392
IF I=0y PRINT MATRICES
3 PRINT 5015 IRUN
531 FORMAT (8H1IRUN NO »I4)
PRINT ACTUAL PROBABILITY MATRIX

PRINT 505
505 FORMAT (26H1ACTUAL PROBABILITY MATRIX)
LA=l

13 PRINT 506s(LoL=1510)
506 FORMAT (6X»10{6Xs12)35X93HOBS»11Xs1HQ)
DO 9 L=1sNS
MAX = NA(L+1)-NA(L)
DO 9 KA=1»MAX
IP = NA(L)+KA
GO TO (697+8)sLA
6 PRINT 50T7sLsKAy (AP(IFPsJ)yJdm]l NS )
507 FORMAT (1HO91291H912+2X910F8.4/(8Xs10F8c4))
PRINT 531 AP(IPNS+1)
531 FORMAT (1H+999X9sF10,44)
GO TO 9
7 PRINT 513sLsKAs(R(IPyJ)9J=19NS)
513 FORMAT (1HO»1291H»12+2X910F8,2/(8X»10F842))
GO TO 9
8 PRINT 807sLsKAs(P(IPsJ)9sJ=19sNS )
PRINT 520y P(IPsNS+1)sP(IPyNS+2)
520 FORMAT (1H++88X9sF10,091XsF1l0e4)
9 CONTINUE
GO TO (10+s21512) » LA
PRINT REWARD MATRIX
10 LA = 2
PRINT 508
508 FORMAT (14H1REWARD MATRIX)
GO TO 13
11 LA = 3
PRINT 514
514 FORMAT (29H1ESTIMATED PROBABILITY MATRIX)
GO 10 13
COMPUTE TRUE OPTIMUM POLICY.
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12 MAX = ITER(5)
OGAIN = VALUE(2)

PRINT HEADER
PRINT 530y IRUN
530 FORMAT (BH1RUN NO s14/51H IT NC OPT EST GAIN ACT GAIN ACCUM

108S EFF 95X +6HPOLICY)

EGAIN OGAIN

AGAIN OGAIN

ACCOBS = 0,0

PROF = 060

EFF = 060

50 PRINT 502+ 1sNsEGAINI)AGAINIACCOBSEFFo(K(J)9sJ=]1)»NS)
502 FORMAT (1Xo1394X91491XsF106291X9F106291X0F9¢091X9Fbe292X912014¢

11H,12))

RETURN

IF NOT 1=0,COME HERE

STORE CURRENT VALUES FO COMPUTE ACTUAL VALUES.

2 PROFIT = WORK2(1)

AGAIN = VALUE(])

PROF = PROF + PROFIT

ACCOBS = ACCOBS + 100,

EFF = (PROF/(CGAIN®ACCOBS))*#100e.

EGAIN = GAIN

GO TO 50

END
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SUBROUTINE PRIOR
RESTORES ORIGINAL PRIOR AND GENERATES A SAM & PROCESS

DIMENSION NA(16)’K(15)’Ap(150’16)9R(150’16)sp(150y17)’W(15’16)
DIMENSION VI15)sWORK2(15)9A(15,15)
CIMENSION OPR(15017)

{ JMMON OPR

¢ IMMON NAQK;APQR’PQNQV!NSyIPRES:GAIN;IRUN
EQUIVALENCE (AoW)s(W(226) sWORK2)

K=aNS+2

MAX = NA(K-1)

DC 1 I=1sMAX

DO 1 J=14K

P(I1sJ)=OPR(1,J)

CALL GEN

RETURM

END
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SUBROUTINE GEN

GENERATOES A SAMPLE PROCESS
SPECIFICATIONS

DIMENSION NA(16)9K(15)sAP(150916)9R(150s16)sP(150417)sWil5s16)
DIMENSION V(15)sWORK2(15)4A(15415)
DIMENSION OPR{150+17)

COMMON OPR

COMMON NAsKsAPsR P yWsVINSsIPRESsGAINsIRUN
EQUIVALENCE (AsW)s(W(226) +sWORK2)
N = MA(NS+])

DO 22 I=1sN

SUM = 0,

DO 20 J=14NS

M = P(IsJ)RP({IsNS+1)

RAN = O,

DO 21 K=1sM

AA = RANNOF {X)

RAN = RAN - +05%#LOGF(AA)

AP({IsJ) = RAN

SUM = SUM + AP(1sJ)

DO 22 J=14NS

AP(IsJ) = AP(IsJ)/SUM
DUMMY = VALUE(5)
RETURN

END

TG
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MAIN 1 5/5/64
FOLLOW OPTIMAL POLICY OF EXPECTED PROCESS

DIMENSION NA(16)sK(15)9AP(150916)sR(150916)sP(150s17)sW(15416)
DIMENSION V(15)sWORK2(15)9A(15415)
DIMENSION OPR(150917)

COMMON OPR

COMMON NA3KsAP9RsPyWsVINSSIPRESsGAINsIRUN
EQUIVALENCE (AsW)s(W(226) 9WORK2)

READ 8502y IPRESINOBS+NOITS,IRUN

CALL IFUT

FORMAT (12+3XeI393X91393Xs12)

CALL OPUT(0,0)

THOOSE AN ITITIAL POLICY USING ESTIMATES
IDUM = ITER(6)

WASTE 25 RANDOM NUMBERS

AA = SETUF(IRUN)

DO 7 I=1925

AA=RANNOF (X))

CALL PRIOR

CALL OPUT (-1+0)

SIMULATE NOITS ITERATIONS

DO 2 I=19NOITS

GAIN = VALUE(4)

CALL OBS({NOBS)

CALL OPUT(TsNOBS)

CONTINUE

GO TO 5

END
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ala]

?é&gEZOFF BETWEEN Iaéégfg?E GAIN AND INFORMATION
DIMENSION NA(16)sK{15)sAP(150416)sR(150516)sP(150517)sW(15516)
DIMENSION V(15)sWORK2(15)sA(15515)
DIMENSION OPR(150s17)
COMMON OPR
COMMON NAJKsAPsRsP sWsVINSSIPRESsGAINsIRUN
EQUIVALENCE (AsW)s(W(226)sWORK2)
DIMENSION HOLD(150)
READ 501 +IPRESs IRUNNOITS»ALPHAs BETA
501 FORMAT (12+3X91293X91293XsF56293X9F5,62)
CALL I1PUT
WASTE 25 RANDOM NUMBERS
AA=SETUF ( IRUN)
DO 7 I=1925
T AA RANNOF (X)
NS NS
MAX = NA(NS+1)
CALL OPUT(0,0)
6 CALL PRIOR
CALL OPUT (~1+0)
DO 1 KKK=1sNOITS
PUT Q'S IN HOLDING AREA AND RELATIVIZE
QMIN = 999999,
DO 2 1=1sMAX
TEMP = P{TsNS+2)
2 QMIN = MINIF(QMINSTEMP)
DO 3 1=1sMAX
HOLD(I) = P(IsNS+2)~-QMIN
3 P(IsNS+2) = (HOLD(I)®*®#ALPHA)/P(1sNS+1)
COMPUTE POLICY BY MAXIMIZING W
IDUM = TTERI(6)
FIND MINIMUM W
WMIN = 999999,
DO 4 1=1sNS
IDUM = K(I)+NA(1)
TEMP = P(IDUMsNS+2)
4 WMIN = MINIF(WMINs TEMP)
RESTORE Q¢S
DO 5 I=1sMAX
5 P(IsNS+2) = HOLD(1)+QMIN
OBSERVE PROPORTIONAL TO WMIN
NOBS = (BETA*WMIN) + 1,
GAIN = VALUE(3)
CALL OBS(NOBS)
CALL OPUT(KKKsNOBS)
1 CONTINUE
GO T0 6
END

[ L]

.8]-




()

MAIN 3
WCIGHTED REWARDS RECHNIQUE
C=(ALPHA®Q ) /N +1
DIMENSIONNA(16)9K(15)9AP(150516)9R(150916)9sP(150917)9sW(15916)
DIMENSION V(15)sWORK2(15)35A(15515)
DIMENSION OPR(150917)
COMMON OPR
COMMON NAsK9sAPsSRsPsWsVINSH»IPRESsGAINs IRUN
EQUIVALENCE (AsW)s(W(226)sWORK2)
DIMENSION C(150)
READ 501 sIRUNSIPRESINOITS»ALPHASBETA
501 FORMAT (3{1293X)9F5,093XsF5.0)
CALL [PUT
CALL OPUT (0,0)
WASTE 25 RANDOM NUM[ ZRWS
AA = SETUF(IRUN)
DO 2 1I=1425
2 AA = RANNOF(X)
IDUM=ITER(6)
NS=NS
MAX = NA(NS+])
99 CALL PRIOR
CALL OPUY(-1,0)
DO 3 I=1sNOITS
DO &4 J=1,MAX
C(J) = (ALPHAR®ABSF(P(JsNS+2)))/P(JsNS+1) + 1,0
4 P(JsNS+2) = PJyNS+2)%C())
GAIN = VALUE(4)
FNOBS = 0.
DO 7 J=1sMAX
T P(JsNS+2) = P{JsINS+2)/C(U)
COMPUTE ESTe GAIN FOR POLICY USING NON-DUMMY Q'S
GAIN = VALUE(3)
DO 5 J=1sNS
IMIN = NA(J) +1
IMAX NA(J+1)
CMIN 999999,
DO 6 L=IMIN,sIMAX
IF (CMIN-C(L)) 64698
8 CMIN = C(L)
ICMIN = L
6 CONTINUE
IDUM = NA(J) + K(J)
IF(IDUM=-ICMIN) 10,511,120
11 FNOBS = FNOBS + BETA*P(IDUMsNS+1)
GO TO 5
10 FNOBS=(P(ICMINsNS+1)®ABSF(P(IDUMsINS+2)))/ABSF(P(ICMININS+2))~
IP(IDUMINS+1) + FNOBS
5 CONTINUE
NOBS = FNOBS
CALL OBS(NOBS)
CALL OPUTI(14sNOBS)
3 CONTINUE
GO TO 99
END =BZ=




MAIN 4 WEIGHTED VARIANCE TECHNIQUE
DIMENSION NA(16)sK(15)3AP(150916)sR(150916)9P(150517)sW(15+16)

DIMENSION V(15)sWORK2(15)sA(15415)
DIMENSION OPR(150517)
COMMON OPR
COMMON NASK s AP sRsPosWsVINSH»IPRESsGAINsIRUN
EQUIVALENCE (AsW)s(W(226)9sWORK2)
DIMENSION Q(20)
READ 501, IRUNsIPRESyNOITS,CEE
501 FORMAT (1393X91393X91343X9F10.5)
WASTE SOME RANDOM NUMBERS
AA = SETUF(IRUN)
DO 2 I = 14925
2 AA = RANNOF(X)
CALL IPUT
14 CALL PRIOR
CALL OPUT (0+0)
DO 3 JJJ=1sNOITS
NOPTS = 0
PROFIT = 04,0
DO 4 KKK = 1,100
EGAIN = VALUE( &)
KOPT = K(IPRFS)

MIN = NA(IPRES)+1
MAX = NA(IPRES+1)
VAR = 0,0

NALT = O

DO 5 I=MINsMAX
TEST = 0,0

DO 6 J=1sNS$S

6 TEST = TEST + R(IsJ)%¥P(1,3J)%(1a=-P(]1yJ))
TEST =(TEST/(((P(IsNS+1) )% (P(TyNS+1)+1e))%%2))%CEE
IF (TEST-VAR) 59547
7 VAR = TEST
NALT = 1
5 CONTINUE
IF (NA(IPRES)+K(IPRES)-NALT) b&s13,8
8 DO 10 I=MINsMAX
Jz[-MIN+1
Q(J) =P(IsNS+2)
10 P(I+NS+2) = -999999,
J = NALT - MIN + 1
PINALTsNS+2) = Q(J)
TGAIN = VALUE(4)
DO 11 I=MINysMAX
JaT=MIN+1
11 PUIsNS+2) = Q(J)
IF (EGAIN - TGAIN = VAR) 12512513
13 K(IPRES) = KOPT
NOPTS = NOPTS + 1
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12 I0OLD = NA(IPRES) + K(IPRES)

CALL 0BS(1)

IPRES = [PRES

PROFIT s PROFIT + R(IOLDsIFRES)
CONTINUE

GAIN = VALUE(4)

WORK2(1) = PROFIT

CALL OPUT (JUJJsNOPTS)

CONTINUE

GO T0 4

END
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MAINS PLOT DISTRe. OF GAIN
SPECIFICATIONS

DIMENSION NA(16)eK(15)19AP(150916)9R(150916)9sP(150+17)sW(15416)
DIMENSION V(15)+WORK2(15)5A(15+15)
DIMENSION OPR(150+17)
COMMON OPR
COMMON NAJKsAPsRsP ¢WsVINSH,IPRESsGAINsIRUN
EQUIVALENCE (AsW)s{W(226)+sWORK2)
DIMENSION G(51)
READ 5C1 9 IRUNIMAX +MTIM
501 FORMAT (13+3X916493Xy14)

WASTE SOME RANXOM NUMBERS
AA = SETUF({IRUN)
DO 12 [1=1¢25

12 AA = RANNOF(X)

14 CALL [PUT
COMPUTE RANGE OF GAIN
PGAIN = VALUE(4)
PRINT 503:PGAIN
RMIN = PGAIN%*#,85
RMAX = PGAIN#1,15
RINC = (RMAX-RMIN)/50.
INITIALIZE
GSUM = Qo
GSQ = 0.
DO 3 1=1,51

3 G(I) = 0.
BEGIN SIMULATION LOOP
DO 6 KKK = 1yMAX

CALL GEN
GAIN = VALUE(2)
GSUM = GSUM + GAIN

GSQ = GSQ + GAIN%*GAIN
GAIN = GAIN - RINC
DO 7 UK=1+50
IF(GAIN-RMIN) 54594
5 G(JK) = G(JK) +1,
GO TO 9
4 GAIN = GAIN - RINC
7 CONTINUE
G(51) = G(51) + 1.
9 FMAX = KKK
CALL TIMLFT(JTIM)
IF(JTIM=-MTIM) 1091046
6 CONTINUE
10 GMEAN = GSUM/FMAX
GVAR = GSQ/FMAX - GMEAN¥GMEAN
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PRINT 5029GMEANsGVARsPGAIN,FMAX
502 FORMAT (1H1+6Xs4HGAIN2X94HPROB 92X s6HMEAN =3F10e442Xs5HVAR =4F10e4

192X910HEXP GAIN =9F10e492X910HNO SAMPS =z,F6,0)
DC 8 1=1451
G(l) = G(I)/FMAX
RMIN = RMIN + RINC
PRINT 503sRMINsG(1)
503 FORMAT (1XsF10e292X9F10e5)

8 CONTINUE
GO TO 14
END
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NUMERICAL SOLUTION TO SPECIAL TWO STATE PROBLE*™

DIMENSION F(2+2)s R(3:2)s V(1000)s 1BDY(1000)

DO 21 11=1,%

2 READ 101 » BETANMAX

READ 102y P(1lsl)s P(1s2)s P(2s1)s P(2+2)

READ 1029 R({1ls1)s R{192)s R(251)9 R(252)s R{351)s R(3,2)
101 FORMAT (F10e0,15)
102 FORMAT (6F10,.,0)

Al = R(391) + BETA®(P(1s1)%#R({1s1) + P(19s2)%R(192))/(140 -

1 P({l1s1)%*BETA)

A2 = (P(192)#BETA#BETA)/ (10 - P(1,1)%BETA )
A3 = R(3,2)
A4 = BETA

C = (AG%P(251)%(P(1s1)%R(1s1) + P(1,2)%R(192)) + (1e0Q =~ A4L®P(1,1))
1 ®(P(251)%R(29s1) + P(2+2)%R(2+2)))/( (140 = A4#P(1s1))% (1.0 - A4*®
2 P(232)) = P(1y2)%P(29]1)%A4%A4)
DO 5 1=19sNMAX
FN=NMAX
S=1
VII) = (S*AL1/FN + (160 = S/FN)#A3) /(140 ~ S#A2/FN - (140 - S/FN)®
1 A4)
IF(V(1)=C)696195
6 V(l1)=C
MAXR=1]
18DY (NMAX) =MAXR
GO TO0 7
CONTINUE
GO TO 3
DO 4 I=MAXRsINMAX
Vil)=C
NM=NMAX~1
FORMAT (15,15/(1CF10.4))
DO 12 NN=1sNM
N=NMAX~NN
FN=N
DO 8 JU=1yN
S=J
S VI(J) = (SHE(A14+A2*¥V(J+1))/FN)+(1e=S/FN)®(A3+A4RV(J))
IF(V(J)-C)10+10,8
10 vtJ) = C
1BDY(N)=J
GO TO 11
3 CONTINUE
11 IBDN=IBDY(N)
1F(N~-51)300,300,301
300 PRINT 20y NyIBODNs(V(I)sI=1,1BDN)
301 CONTINUE
12 CONTINUE
PRINT 105y (1BDY(J)eJ=]1sNMAX)
105 FORMAT (1X9201392X/)
21 CONTINUE
CALL EXIT
END
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Flow Charts

MAIN 1

( READ PROCESS
(IPUT)

L .

READ IPRES,
NOBS, NOITS,
IRUN

PRINT
PROCESS

(oput(0,0)

Choose an ini-

tial policy to
ttart calcula-

ions
(IDUM=ITER(6))
T

WASTE 25

RANDOM NUMBERS

y

GENERATE A
SAMPLE PROCESS
(GEN)

¢

I=1

~

¥

FIND OPTIMAL
POLICY OF
EXPECTED
PROCESS

(GAIN=VALUE(4))
¥

I=I+1

SIMULATE NOBS
OBSERVATIONS
UNDER THAT
POLICY

(0BS(NOBS))

———
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MAIN 2

READ PROCESS

(IPUT) (GEN)
(PRIOR)

v

(READ IPRES, IRUN,

NOITS, ALPHA,

BETA
¥

PRINT
PROCESS
(opur(0,0))

KKK=1
g
FIND MINIMUM
KKK =KKK Qlﬁz
+1 1
QMIN
NO i
YES -~ KKK= SAVE Qi 'S
“\_NOIT REFLACE BY
y Wi=(Q;i-QMIN)®
—~F
e -
‘ i
PRINT COMPUTE POLICY
RESULTS TO MAXIMIZE
Wi IN EACH
/f’ STATE(ITER(E))
. 13
R
OBSERVE NOBS FIND MINIMUM
TRANSITIONS
UNDER THIS POL- W=
ICY (0BS(NOBS)) WMIN
1 I
FIND GAIN OF RESTORE Q; 'S
THIS POLICY e =
NOBS= P * WMIN
(GAIN=VALUE(3) ) +1.




PRINT
FINAL
MATRICES
(CPUT(0,0))|—

LA

SIMULATE

FNOBS OBSER-

VATIONS
(OBS(NOBS) )

[ FNOBS=FNOBS+

MATN 3

READ TPRES,
IRUN, NOITS,
ALPHA, BETA

rﬁ

hy

READ PROCESS

(IPUT) (GEN) J

(PRIOR)

v

PRINT
PROCESS

l

WASTE 25
RANDOM
I"UMBERS

Y

CHOOSE AN
INITIAL
POLICY
(ITER 6)

FIND OPTIMUM
WEIGHTED POLICY
(VALUE(&))

J

FNOBS=FNOBS+
B .NK
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MAIN &4

-

READ IRUN, IPRESJ

NOITS, CEE.

¥
WASTE 25

RANDOM NUMBERS

J

|72

READ PROCESS
(1PUT)
(prTOR) (GEN)
Y
PRINT
PROCESS
(oput(0, 0)
JJJ=1
(Up to
NOITS)
+—
NOITS=0
(No of OPTS)
PROFIT=0
Y
KKK=1
(Up to
100
D) - YES
.
FIND ALTERNA- JJ=
TIVE WITH MIN JIT=JJT+1 NOITS
TUTAL VARTANCE ?
IN STATE IPRES ™
CALL IT NALT
PRINT
S RESULTS OF
é OPUT(JJJ
poLIcY §OBs)§ ’
(ES
FIND GAIN OF o
BEST POLICY is
KKK = >
USING NALT= = KKK=1CC>
TGATN \;/
N o | =
OPERATE UNL_R OPERATE OBSERVE A
CPTIMUM ! . 3 «| UNDER TRANSITION
T LICY IBALE « CER S S am PROFTT=PROFIT |
OTAL V
NOITS=NOITS+1 ‘x@l/:gi L +REWARD
2 L
T
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DISTRIBUTION OF GAIN

READ IRUN,
MAX, MTIM

Y
WASTE 25

RANDOM NUMBERS

}

|2

X
READ PROCESS
(IPUT)

v

RINC=
RMAX-RMIN
50

Y

GSUM=0

GSQ=0

¥

G(1)=0

I=1,51

y

K¥K=:1
(iteration
count)

GENERATE A
SAMPLE PROCESS

(GEN)

¥

CONVERT COUNTS
TO FREQUENCIES

G(I)=C(I)/MMAX

GVAR=GSQ/FMAX

- (GMEAN)®

GMEAN=
GSUM/FMAX

FIND GAIN
OF SAMPLE
PROCESS

INCREMENT
PROPER CELL
BY 1

{

——

GSUM=GSUM
+GAIN

GSQ=GSQ+
GAIN.GAIN
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APPENDIX B

SUMMARY OF COMPUTER RUNS

B.1 Runs with MAIN 1

B.1.1 Extreme point from sample process (Run I)

We chose as a prior the following matrix, { I_-’:; }, with its correspond-

, ’ k
ing set of prior parameters Ni :

(% Nk
j=1 Jj=2 Jj=3

i=l k=1 1/3 1/3 1/3 30
k=2 1/10 8/10 1/10 20
k=3 1/10 1/10 8/10 60

i=2 k=1 2/10 0 8/10 30
k=2 8/10 1/10 1/10 20
i=3 k=1 1/3 1,3 1/3 30
k=2 1/4 L/2 1/4 15
k=3 8/10 1/10 1/10 40

As the actual process we used the taxicab example presented in
the introduction. The actual process will be seen to be an "extreme
point" from the prior. As expected (see 6.2), only policy (1,1,1)
with an actual gain of 9.24 is ever chosen. The true optimum (2,2, 2)

with gain of 13. 34, is never discovered.
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B.1.2 Randomly chosen processes (Run 10)

This run was for a five-state process with three alternatives
in each state. Both the prior probabilities and the rewards were drawn
from random number tables. Each Ni was chosen to be 25, which we
consider expresses a small degree of "certainty. " The results are
summarized in the table following. Notice that the optimal solution
(or one very close to it) was always found quite rapidly, and that effi-

ciency stays in the high 90's.

B.2 Runs with MAIN II

B.2.1 Run 2

The same data was used as in Run 1, but MAIN II was used
to try to force (2,2,2) to be explored. Our parameters were a =20,

p =100. In 25 iterations, only policy (1,1,1) was chosen.

B.2.2 Run 3

We used the same data again, but modified our parameters to
a=2, p =100. Some experimentation was introduced: (1,1,1) was used
for the first 19 iterations, then (1,2,1) with gain of 12.50 is tried for
6 iterations, then (1,2,2) with gain of 13.15 is tried once. But, then

the process locks on (1,1,1).
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50 ITFEFRATIONS OF 20 OBSER VATIONS
RUN 10 MAIN 1

Sample Optimal Optimal Max. Iteration Min. Iteration No. Diff. policies

Point Policy Gain Eff. # Eff. # Opts. tried
1 1; 3, 12, 1 5.68 . 9968 50 .9677 1 45 2
2 Ls 3 172, A 5.82 . 9990 50 . 9524 1 49 2
3 SN - = i | 5u61 1.0000 1 . 9886 2 38 3
4 1,3,1,2,3 5.83 . 9873 50 . 9783 1 0 2
5 1,1,1,2,1 6.20 1.000 50 1.200 1 50 1

295




Runs with MAIN III

.1 Fun 4

Same data as Run 1, with parameter a = 20.

Iteration NOBS Policy Est, gain Act gain
1 54 221 8.69 8.81
2 111 111 9.38 9.20
3 34 222 5.70 13.34
4 18 222 9. 26 13.34
5 8 222 10.57 13.34
6 8 222 11,76 13.34
7 5 222 10.90 13.34
8 5 222 li.l2 13.34
9 4 222 11.14 13.34

10 4 222 11,29 13.34
11 40 212 8.95 8.81

Locks on 222
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B.3.2 Run 5: MAIN (I, same data as Runl, f=0.4, a =20

Iteration NOBS
1 54
2 133
3 40
4 119
5 37
6 62
4 85
8 138
) 287
10 863
11 233
12 287
13 708
14 620
15 1418
16 2004
17 4406

Folicy
212
111
222
2282
111
212
222
212
122
111
222
222
212
222
122
323
111

Est gain

8.
%t
5.
9.
10.
8.
L
9
12.
9-
12.
13.
8.
18
13.
8.

(o]

7.

69
38
70
46
33
7
07
09
05
29
85
04
99
24
04
93
24

Ikct_gain

8.81
9.20
13.34
13.34
13.34

13.15
8.98

18 Locks on 222 (no. of observations at each iteration grows

larger and larger)
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B.3.3 Run 6

Same data as Run 5, but parameters a = 20, B=0.1. This now
uses (2, 2,2), most of the time, but converges slowly to it. Begins
with (2,1,2), then (1,1,1), and later returns to (2,1, 2) for a few itera-

tions. Convergence is slow.

B.3.4 Run 7

Same data as Run 6, with a =20, = .0l. Same general shape

as Run 6, but there are more observations in later stages.

B.3.5 Run 8

More weight is given to immediate returns by making a =40, f=.1.
See graph following for plot of efficiency (see Chapter V1) versus accumu-

lated number of observations.

B.3.6 Run 9

Same data. a =10, p=1. See graph followiny.
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APPENDIX C

FINDING A SECOND BEST POLICY

Cc.1 Motivation

In Chapter VII we discussed the advantages of being able to
select the ten best policies for the expected process, in order to
simulate and find more explicit information about these most-likely
candidates. But finding the ten best policies hinges upon finding an

algorithm to find the second best policy.

C.2 Irapossibility of exact solution

Let O denote the optimal policy of a known process (such as
the expected process ), and let N denote the next, or second, best

policy. Then:

is to be a minimum for N # O.

Define:
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N
Multiplying both sides by i and summing over i, we have:

Y (0. N AN, vo”N_“vN”N_; N N
g -8 i PR T i i LA

—
3 ; i i
N”NVO_ZZ N N N
Piy i Y Pis "1 Y
i j i j

But we recall that 7 p = 7, whence,

3“ ) N N0 vy 0 ,N

o i 1 ) ' J J

i J

S‘ Z N N N Z N N
p.. ®, v, = W I

v 1] 1 J J J

i j ]

So finally,
G N A (o
§ =8 =g = Vi T

Thus, the second best policy is tha! which minimizes:

S n yN N#O
) 1 1

i

But minirnizing this quantity involves a search thro'gh all possible
o = o .
sets of :rri . and this is prohibitive.
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C- 3 Approximations to second best policy

We can get an "approximation" by changing only one state from

the optimal policy, so that

N
v, 9 1i#k
N . :
Y = min possible for that state >0

This procedure serves to minimize:

Z )
(&
; 1

i

but ignores the weighting by the 7 's.

cC. 4 Justification of approximation

This approximation procedure may be used as follows:
i. Find optimum policv.

2. Perturb each state: i.e., find N policies, each differing from the
optimal in one state. Make best such perturbation possible in each

state (that 1s minimize v ).
1

3. Apply mean-variance algorithm to these N policies.

The obvious disadvantage of this 1pproach is that the N policies so
determined are not actually the N best. But a compensating advantag:
is that at least 2 alternatives in each state are always considered, which
encourages wide consideration of experimentation. Also, since the N
best policies of the expected process are not necessarily the N best of

the actual process, it is not so critical to find the precise N best of
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the expected process, so long as the ones chosen embrace a widc
variety of alternatives, and are reasonable candidates for inspec-

tion. This approximation technique meets these demands.

-104-




BIBLIOGRAPHY

Howard, R. A., Dynamic Programming and Markov Processes,
Wiley, New York, 1960

Mosimann, J. E., ''On the Compound Multinominal Distribution, .
Biometrika, Vol. 49 (1962), pp. 65-82

Silver, E. A., "Markovian Decision Processes with Uncertain
Transitio. . Probabilities or Rewards, " Technical Report No. 1,
Operations Research Center, M.I.T., 1963

-105-




Unclassified
Security Claasification

DOCUMENT CONTROL DATA - R&D

(Bosurity ciassification of title, bedy ol sbetreet and indezing snnetation must be entered whon the sverell repert e clessifiod)
1 ORIGINATING ACTIVITY (Carporete suther) 2o REPORY BECURITY C LASMIFICATION

Operations Research Center Unclassified
Massachusetts Institute of Technology 25 smous
Maag Q2139

e

(3 REPORT TITLE
Technical Report No. 11
"MARKOVIAN DECISION PROCESSES WITH UNKNOWN TRANSITION
b} 11
Tﬁﬁ%%W&m and inolusive dates)
Technical Report
8 AUTHOR(S) (Laat name. firet name, initial)
Cozzolino, John M.
Miller, Ralpb L.

nzalez-Zubieta, Romulo

¢ REPORT DATE 7e TOTAL NO. OF BAGES 70 NO. OF nEPFs
March 1965 105 3
8e. CONTRACT OR GRANT NO 80 ORIGINATOR'S REZPORT NUMBEMNS)

Nonr-1841(87)

b PROJECT NO

NR 042-230 {Technical Repoit No. 11)
c. 1) 8.!7:‘1.0:0':3"”" NO(3) (Any other numbere thet mey bs sssigned

d.

10 AVAILABILITY/LIMITATION NOTICES

15. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research, Branch of
Logistics and Mathematical Statistics

19. ABSTRACT

A dynamic programming formulation tor tne Markovian decision
process when traneition probabilities are unknown is proposed. This
formulation is used to solve simple problems, but is shown to be too
difficult to zpply to more complex systems.

Various approximate methods are then proposed and discussed.
A simple approximating algorithm is finally presented.

FORM
DD 1 JAN 86 1473 Unclaasified
-106- Security Cleeeificetion




Unclassified
Security Classification

1a LINK A LINK B LINK C
KEY WORDS , mOLE | WY ROL K wr ROLE& wY
Markov
decision
Bayesian
transition
beta distribution
prior
dyramic programming
programming
knowledge space
simulation
policy

1. ORIGINATING ACTIVITY: Eunter the name and sddress
of the contractor, snbcontractor, grantee, Departmest of De-
fense actlvity or other organizstion (corporate suthor) issuing
the report.

2a. REPORT SECURTY CLASSIFICATION: Enter the over
sll security clsssificstion of the report. Indicate wiiether
‘'Restricted Dats’’ is included Marking 1s to [ > In accord
ance with appropriste security regulstions.

25. GROUP: Autonstic downgrading ia specified in DeD Di-
rective 5200. 10 snd Armed Forces Industrial Manmal. Enter
the group number. Alsn, when spplicable, show that optional
merkings hsve heen used for Group 3 snd Group 4 as suthoe-
ized.

3. REPORT TITLE: Enter the complate report title in all
capits] letters. Titles In all cases should be unclaseified.
If a meaningful title csnnot be sclected without clessiilce
tion, show title cisssificstion In all cepitals in pareathesis
immedistely following the title.

4. DESCRIPTIVE NOTES: If sppropriate, eater the type of
report, .., smernm, progress, cummary, annual, or final.
Give the inclusive dates when s specific reporting period is
coverad.,

S. AUTHOR(Sx Enter ‘he name(s) of author(s) es shown on
or in the report. Enter last name, first name, middle initial,
If wilitary, show rank and branch of service. The nsme of
the principel aihor is an shsolute minimun requirement.

6. REPORT DATY. Entet the Jdste of the report as day,
mornth, year, or month. yesr. If more than ona date sppears
on ths raport, use» dste of publicstion,

7a. TOTAL NUMSER OF PAGES: The total page count
should follow nornsl paginetion procedures, Lo, enter the
number of pages contsin’ng informstion

76. NUMBER OF REFERENCES Enter the total number of
referencee cited in the report.

8a. CONTRACT OR GRANT NUMBER: If sppropriste, entex
the spplicsble number of the contract or grant under which
the report wes written,

8d, &, & 8d. PRO)ECT NUMBER: Enter the appropriate
mllitery departmer. identification. such ss pryject sumber,
avbproject mumber. system numbaers, tesk  ;mber, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cisl report number by which the document will be 1dentified
and controlled by ths originating activity. This number must
be unique to thla report

9b. OTHZR REPORT NUMBZIR(S): If the report hee beea
sssignea any other report numbers (either by tho originator
or by the apcasor), siso enter this namber(s).

10. AVAWABILITY/'".il fATION NOTICES: Ksnter avy lim»
itstions on further disseminstion of the report, other than thaul

INSTRUCTIONS

imposed by security rl:zasificstion, using standard statements
such as:

(1) "*Quailfied requesters may obtain coples of this

report from DI.C "’

"Foreign snnouncement and disseminction of thir
report by DDC ir not authorized.’’

**U. 8. Government agenciec may obtain coples of
this report directiy from DDC. Other qualified DDC
users shall request through

@

3

‘'U. S. military agencies may obtsin copies of this
report directly from DDC. Other qualified users
shall request through

)

**All distribution of this report is controlied Qual-
ifled DDC users shall request through

s

If the report has heen furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact end entex the price, if known

1L SUPPLEMZNTARY NOTES: Use for sdditional explane-
tory notee.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the depertmental project office or 1sborstory sponsoring (psy~
ing for) the research and development. Inciude addresa.

13. ABSTRACT: Enter an abstract giving a drief and factuel
summery of the document indicstive of the report, even though

it may slso appear elsewhers in the body of the techaical re- I
port. If additionai space is required, s continuation sheet shall
be sttached.

It is highly desirable thst the abatract of claswified reports
be unclassified. Eech paragraph of the abatract shsll end with
sn indication of the military security clsssificstion of the in-
formation in the paragraph, represented as (T$). (8). (C). or (U).

There 1a no limitation on the length of the abatrect. How-
ever, the suggested length is from 150 to 228 words.

14. KEY WORDS: Koy words are technicslily meaningful tesms
cr short phreses that chsracterise s report snd may be nsed ss
index entries for cstaloging the report. Xey words must be
telected 8o that no security clsssificstior is required. Ideati-
fiers, such as equipment mode. designstion, t:sde nawme, militery
project code name, geographic locstion, may be usad as key
words but will be fcllowed by sn indicstion of technical con-
text. The assignment of links, relss, snd weights is options. .

O M

1T 24N ¢4

DD 1473 (BACK)

Unclassified
Security Classificsiion




